《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于CNN的智慧農場圖像分類方法
基于CNN的智慧農場圖像分類方法
2023年電子技術應用第4期
楊詒斌1,2,王俊強1,2,柴世豪1
(1.中北大學 儀器與電子學院, 山西 太原 030051;2.中北大學 前沿交叉科學研究院, 山西 太原 030051)
摘要: 為解決新疆兵團農業現代化建設中有感知無決策的問題,提出一種基于注意力機制模塊(SENet)與卷積神經網絡混合模型遷移學習的圖像分類方法(TL-DA-SE-CNN)。該方法選擇4種不同的CNN模型進行權重采集,包括VGGNet、ResNet、InceptionNet和MobileNet。模型使用SENet分類器代替卷積神經網絡的全連接層,提取圖像的結構性高階統計特征進行主題分類,并使用BP算法進行參數調整,分類準確度達98.20%。實驗結果表明,將CNN與遷移學習、數據增強和SENet相結合的技術提高了牲畜圖像分類的性能,是卷積神經網絡在農場自動化分群中的有效應用。
中圖分類號:TP183
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223297
中文引用格式: 楊詒斌,王俊強,柴世豪. 基于CNN的智慧農場圖像分類方法[J]. 電子技術應用,2023,49(4):33-38.
英文引用格式: Yang Yibin,Wang Junqiang,Chai Shihao. Image classification of intelligent farm based on convolutional neural network[J]. Application of Electronic Technique,2023,49(4):33-38.
Image classification of intelligent farm based on convolutional neural network
Yang Yibin1,2,Wang Junqiang1,2,Chai Shihao1
(1.School of Instrumentation and Electronics, North China University, Taiyuan 030051, China; 2.Institute of Frontier Interdisciplinary Sciences, North China University, Taiyuan 030051, China)
Abstract: In order to solve the problem of perception and no decision-making in the agricultural modernization of Xinjiang Corps, an image classification method (TL-DA-SE-CNN) based on attention mechanism module (SENet) and convolutional neural network hybrid model transfer learning is proposed. This method selects four different CNN models for weight acquisition, including VGGNet, ResNet, InceptionNet and MobileNet. The model uses the SENet classifier instead of the fully connected layer of the convolutional neural network, extracts the structural high-order statistical features of the image for topic classification, and uses the BP algorithm to adjust the parameters, with a classification accuracy of 98.20%. Experimental results show that the technology of combining CNN with transfer learning, data augmentation and SENet improves the performance of livestock image classification, which is an effective application of convolutional neural network in farm automation clustering.
Key words : deep learning;convolutional neural network;data enhancement;the migration study

0 引言

卷積神經網絡遷移學習數據增強已被應用于自動可靠地對農場果蔬圖像進行識別與定位。趙立新等人也將這些方法應用于農業生產中農作物病蟲害識別技術,以提高分類精度。目前,SENet也廣泛應用于多個領域。劉學平等在基于YOLOv3模型的特征提取中加入了SENet,改良了傳統YOLOv3將圖像背景識別為工件的情況,模型查全率得到有效提升。蔡偉龍等提出了一種將SENet和多頭自注意力相結合的關系抽取模型,對卷積通道進行注意力加權機制以解決遠程監督的噪聲,檢測速度和準確性獲得了很大的提高。

本文介紹了一種新的混合模型,該模型將CNN與SENet分類器相結合,采用遷移學習和數據增強以優化性能,同時降低訓練數據要求。經過比較實驗,混合模型將MobileNet與SENet相結合,前者在4個CNN中具有最高的分類準確性。實驗表明,所提技術對農場物種的分類性能良好。



本文詳細內容請下載:http://m.jysgc.com/resource/share/2000005279




作者信息:

楊詒斌1,2,王俊強1,2,柴世豪1

(1.中北大學 儀器與電子學院,  山西 太原 030051;2.中北大學 前沿交叉科學研究院, 山西 太原 030051)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 色综合一区二区三区| 5g影院天天爽天天| 日产乱码卡1卡2卡三卡四在线| 亚洲国产91在线| 污污视频网站免费| 你懂的电影在线| 精品欧洲AV无码一区二区男男 | 精品免费国产一区二区三区| 国产三级在线观看播放| 国产日本在线视频| 国产精品亚洲а∨无码播放不卡| 99RE6这里有精品热视频| 女人张开腿让男人插| 中文亚洲日韩欧美| 拔擦拔擦8x华人免费久久| 久久亚洲精品无码aⅴ大香| 日韩欧美卡一卡二卡新区| 亚洲av日韩综合一区久热| 欧美日韩三级在线| 亚洲欧美日韩综合一区久久| 狠狠97人人婷婷五月| 免费在线观看a级毛片| 精品一卡2卡三卡4卡免费网站| 又黄又爽免费视频| 老司机精品视频在线| 国产一级淫片a| 蜜臀av性久久久久蜜臀aⅴ| 国产人妖ts在线视频播放| 韩国精品福利一区二区三区| 国产女人18毛片水| 黄色网址中文字幕| 国产成人午夜福利在线播放 | 没带罩子让他玩儿了一天| 亚洲综合成人网| 波多野结衣在线观看中文字幕| 人人澡人人澡人人澡| 狠狠做深爱婷婷综合一区| 伊人久久久久久久久久| 狠狠久久精品中文字幕无码| 亚洲综合第一区| 波多野结衣一区二区三区高清av |