《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 計及可再生能源接入配電網(wǎng)的負荷預測和優(yōu)化
計及可再生能源接入配電網(wǎng)的負荷預測和優(yōu)化
電子技術應用
翟哲1,余杰文2,杜洋3,曹澤江4
1.中國南方電網(wǎng)電力調(diào)度控制中心;2.南方電網(wǎng)人工智能科技有限公司; 3.深圳市法本信息技術股份有限公司;4.南方電網(wǎng)數(shù)字電網(wǎng)科技(廣東)有限公司
摘要: 目前,可再生能源大量接入配電網(wǎng),但是太陽能、風能、光伏及風電等可再生能源的間歇性和隨機性不可避免地會造成配電網(wǎng)的波動。考慮電網(wǎng)內(nèi)可再生能源發(fā)電功率與用電負荷隨時間變化的特點,提出一種基于小波變換和神經(jīng)網(wǎng)絡的可再生能源接入配電網(wǎng)的負荷預測和優(yōu)化方法。首先采集配電網(wǎng)的發(fā)電與負荷數(shù)據(jù),利用小波變換處理收集到的數(shù)據(jù),得到局部尺度和頻率分解的特征參數(shù),建立神經(jīng)網(wǎng)絡預測模型;然后,對經(jīng)過小波變換后得到的特征參數(shù)進行訓練,根據(jù)預測負荷對可再生能源的發(fā)電量進行調(diào)節(jié),保持配電網(wǎng)供需側(cè)的動態(tài)平衡。結(jié)果表明,所提方法能夠?qū)ω摵蛇M行有效預測,通過提前預測負荷量,保證配電網(wǎng)用電穩(wěn)定性的同時,最大化利用可再生能源。
中圖分類號:TM93 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245284
中文引用格式: 翟哲,余杰文,杜洋,等. 計及可再生能源接入配電網(wǎng)的負荷預測和優(yōu)化[J]. 電子技術應用,2024,50(11):35-41.
英文引用格式: Zhai Zhe,Yu Jiewen,Du Yang,et al. Load prediction and optimization of renewable energy access to the distribution network[J]. Application of Electronic Technique,2024,50(11):35-41.
Load prediction and optimization of renewable energy access to the distribution network
Zhai Zhe1,Yu Jiewen2,Du Yang3,Cao Zejiang4
1.Dispatching and Control Center, China Southern Power Grid; 2.China Southern Power Grid Artificial Intelligence Technology Co., Ltd.; 3.Shenzhen Faben Information Technology Co., Ltd.; 4.China Southern Power Grid Digital Power Grid Technology (Guangdong) Co., Ltd.
Abstract: Currently, with the large-scale integration of renewable energy into the distribution network, the intermittency and randomness of renewable energy sources such as solar and wind power inevitably cause fluctuations in the distribution network. Considering the characteristics of renewable energy generation power and electricity load in the power grid over time, a load prediction and optimization method based on wavelet transform and neural network for renewable energy access to the distribution network is proposed. Firstly, the grid operation data are collected, and the wavelet transform is used to process the collected data to obtain the feature parameters of local scale and frequency decomposition. A neural network is established. Then the feature parameters obtained after the wavelet transform are trained to obtain a model capable of predicting the load, according to which the power generation of renewable energy sources can be adjusted in time to maintain the dynamic balance between the supply and demand sides of the distribution network. The results show that the proposed method can effectively predict the load and regulate the power generation by observing the load in advance to ensure the stability of power consumption in the distribution network and simultaneously maximize the use of renewable energy.
Key words : cloud technology;neural network;wavelet transform;wind and solar power generation;load prediction;power generation optimization

引言

近年來,可再生能源發(fā)電設備裝機容量持續(xù)增長,極大地提升了配電網(wǎng)滿足更多用電負荷的能力[1]。但是風光發(fā)電出力波動性大,對電力系統(tǒng)的運行方式、潮流方向及電網(wǎng)運行態(tài)勢造成了很大的影響,提升了調(diào)度難度[2-3]。目前,解決可再生能源波動性對電網(wǎng)用電穩(wěn)定性的影響的需求不斷增強。在此背景下,張耀聰[4]利用LSTM、注意力機制的神經(jīng)網(wǎng)絡對風力、太陽能等可再生能源的出力進行預測以優(yōu)化電網(wǎng)調(diào)度方式;葉梁勁等人[5]利用小波變換對電力負荷相關數(shù)據(jù)(天氣、日期等)進行特征提取,使用LSTM長短期記憶神經(jīng)網(wǎng)絡對特征提取后的數(shù)據(jù)進行訓練,以實現(xiàn)對電力系統(tǒng)的負荷預測,得到了較高精度的預測模型;楊麗薇等人[6]采用小波分解與BP神經(jīng)網(wǎng)絡的組合算法,預測相同天氣類型下的光伏電站短期功率輸出,實現(xiàn)了對晴天與多云天氣下的光伏功率輸出預測。預測態(tài)勢感知技術也逐漸被用于優(yōu)化配電網(wǎng)的運行過程[7-9]。

雖然不少研究學者針對電力負荷預測做出了研究并得到了一定研究成果,但目前的研究缺乏一套可以執(zhí)行的系統(tǒng),并且研究對象(數(shù)據(jù)集的參量)較為單一。綜上所述,針對現(xiàn)有研究難以解決風光發(fā)電波動大、負荷大小難以預測對電網(wǎng)運行態(tài)勢造成重大影響以及調(diào)度困難的問題,本文通過構建配電網(wǎng)態(tài)勢感知框架,提出了一種基于小波變換和神經(jīng)網(wǎng)絡的可再生能源接入配電網(wǎng)的負荷預測和優(yōu)化方法。首先,采集電網(wǎng)運行數(shù)據(jù),利用小波變換處理收集到的數(shù)據(jù),得到局部尺度和頻率分解的特征參數(shù);然后建立神經(jīng)網(wǎng)絡,對經(jīng)過小波變換后得到的特征參數(shù)進行訓練,得到能夠預測負荷的模型,通過預測負荷并結(jié)合實時用電需求進行合理的調(diào)度,實現(xiàn)發(fā)電設備與用電設備的之間的平衡,提高配電網(wǎng)的穩(wěn)定性;最后運用至實例中表明,本文方法能夠在保證最大化利用綠色可再生能源的同時,維持用戶側(cè)的用電穩(wěn)定,提升含有可再生能源的配電網(wǎng)可靠性。


本文詳細內(nèi)容請下載:

http://m.jysgc.com/resource/share/2000006207


作者信息:

翟哲1,余杰文2,杜洋3,曹澤江4

(1.中國南方電網(wǎng)電力調(diào)度控制中心,廣東 廣州 510000;

2.南方電網(wǎng)人工智能科技有限公司,廣東 廣州 510000;

3.深圳市法本信息技術股份有限公司,廣東 廣州 510000;

4.南方電網(wǎng)數(shù)字電網(wǎng)科技(廣東)有限公司,廣東 廣州 510000)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。
主站蜘蛛池模板: 大学生男男澡堂69gaysex| 日本免费一区二区在线观看| 免费A级毛片在线播放不收费| 色吊丝最新永久免费观看网站| 国产成人免费福利网站| 18无码粉嫩小泬无套在线观看| 夜色邦合成福利网站| 三年在线观看免费观看完整版中文 | 亚洲乱色伦图片区小说| 欧美精品亚洲精品日韩专区| 人人添人人妻人人爽夜欢视AV| 精品剧情v国产在免费线观看| 四虎在线永久精品高清| 被三个男人绑着躁我好爽视频| 国产成人vr精品a视频| 免费在线视频a| 国产精品一区二区电影| 亚洲av本道一区二区三区四区| 正在播放年轻大学生情侣| 人妻无码中文字幕| 真正国产乱子伦高清对白| 制服美女视频一区| 精品欧洲av无码一区二区三区| 国产h视频在线观看| 野战爱爱全过程口述| 国产在线观看首页123| 黑人巨大精品欧美一区二区免费 | 久久久无码一区二区三区| 日韩人妻不卡一区二区三区| 久久香蕉国产线看观看亚洲片| 最近高清中文在线字幕在线观看| 亚洲乱码一区二区三区在线观看| 欧美国产一区二区三区激情无套| 亚洲小说区图片区另类春色| 永久免费毛片在线播放| 亚洲熟妇av一区| 欧美网站在线观看| 亚洲欧洲精品成人久久曰影片| 欧美色图综合网| 亚洲欧美色中文字幕在线| 欧美裸体xxxx极品少妇|