《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 超高性能微波天線饋源系統的設計 .
超高性能微波天線饋源系統的設計 .
摘要: 本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。
Abstract:
Key words :

  本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。計算結果與實測結果吻合的較好,在4.4~5GHz的頻段中,整個饋源系統的駐波優于1.05,交叉極化鑒別率優于-40dB。

  關鍵詞:超高性能饋源系統 高頻結構仿真軟件

一、 概 述

  近幾年來,我國通信事業的飛速發展,微波接力通信天線也不斷地發展和完善,衛星通信系統的傳送網功能主要通過光纖,地面微波,空中衛星等通信方式來完成。從微波傳送系統所采用的新技術及傳送容量的角度來看,新一代的同步數字系列SDH微波通信系統替代了傳統意義上的PDH微波通信。為適應正在興起的SDH微波通信中頻率復用的發展,我們需要研制超高性能的微波天線。它應具有很高的前后比(F/D),很高的交叉極化鑒別率(XPD)和極低的電壓駐波比(VSWR)。因此,超高性能微波天線系統具有低的電壓駐波比(VSWR優于1.06或反射損耗大于30.7dB)和高的交叉極化鑒別率(大于38dB)。

二、 系統組成

  超高性能微波天線的饋源系統是由喇叭,正交器,扭波導,彎波導和波導饋線組成。其中喇叭和正交器是關鍵部件。
  1.喇叭
  適合超高性能微波天線的饋源的喇叭有多種[1][2]。本饋源采用帶有三個扼流槽的平面波紋喇叭,這種平面波紋喇叭具有旋轉對稱的方向圖,低的副瓣,低的交叉極化和穩定的相位中心。喇叭的結構如圖 1所示。它是由一個圓波導和三個同心圓環構成。為了改善喇叭的駐波特性,我們在喇叭口附近對稱地放置調配塊。為了防止異物等進入喇叭,需對喇叭口進行封閉。通常在喇叭口上加介質薄膜,一般介質薄膜均會使喇叭的駐波變壞,我們利用高頻仿真軟件對介質的位置與厚度進行調整,使之具有改善駐波的特性。優化后的喇叭駐波優于1.05。

t49-1.gif (4229 bytes)

圖 1 喇叭結構

  2.正交器
  在現代天饋系統中,頻率復用技術是利用頻率資源最經濟的方法之一,可達到擴大通信容量的目的。正交極化頻率復用技術是用雙極化天線來實現的,即在同一頻率上,利用極化正交特性傳輸兩路獨立的信號。正交極化頻率復用技術有兩種,即雙線極化和雙圓極化[3]。正交極化的合成和分離是在饋電系統中實現的。雙線極化頻率復用是用正交模耦合器(OMT)也稱極化分離器(簡稱正交器)完成的。
  正交器是常用的微波元件,但介紹其設計方法的文獻較少[4]。普通的正交器(如圖 2所示)雖然只表現為三個物理端口,但就電氣上來說是四端口器件。這是由于公共端口中有兩個正交的主模(圓波導中的TE11/TE*11模或方波導的TE10/TE01模)與其他兩個端口中各自的基模(矩形波導的TE10模或同軸線中的TEM模)匹配。
  正交器的作用是分離公共端口中兩個正交主模的獨立信號并將它們傳給單一信號端口的基模,使所有電端口匹配且在兩個獨立信號之間有高的交叉極化鑒別力。因此,理想正交器的散射矩陣為

gs5001.gif (1483 bytes)

  這里端口1和2代表位于物理公共端口的主模,端口3和4是基模接口,例如,分別在端口1與端口3和端口2與端口4之間提供直接連接。其相移滯后分別為φ1和φ2。
  正交器的形式有多種,其性能略有差異。一般主波導的形式有圓波導和方波導,在寬頻帶應用時也可采用四脊波導。與分支波導(也稱側臂)耦合的耦合孔的位置在錐縮(漸變或階梯)部分,也有用膜片或隔離柵短路耦合的。本文所介紹的正交器是在較窄的工作頻帶(10%~20%)內滿足高性能和低成本的要求。對高性能而言是要求有較小的反射損耗(VSWR)和高隔離(端口隔離和極化隔離);低成本則要求結構簡單,加工方便。
  為了保證正交器的性能,其最低工作頻率應滿足fmin>1.1fc。這樣圓波導正交器的最大工作帶寬約為17%,方波導正交器的最大工作帶寬約為25%。在這樣的帶寬內正交器隔離性能僅受結構尺寸和加工對稱性的影響。如果大于最高工作頻率,由于高次模的影響,正交器的隔離性能將變差。
  正交器的設計的準則是抑制高次模的產生,簡化結構,保證結構的對稱性,用較少的匹配元件實現各個端口的匹配。
  正交器設計的關鍵是方形或圓形波導分支耦合器的結構及兩個基模端口的匹配部分。我們所設計的正交器采用如圖 2所示的形式。整個設計過程中首先確定方波導的尺寸,然后設計直通口的方矩波導階梯過渡。最后確定側臂耦合孔位置。選取耦合孔的大小與位置應以盡可能減小對直臂的影響又能很好地耦合極化信號為宜。由于側臂耦合結構變量較多,對性能影響很大,優化側臂尺寸是十分必要的。

t50-1.gif (1580 bytes)

圖 2 C波段正交器

  對微波元件來說,通過求解Maxwell方程這一古典的方法來獲得其特性是困難的。由于高速度大容量計算機的出現。促進了各種數值分析方法的發展。在電磁場問題的數值計算領域出現了多種方法,如有限時域差分法(FDTD),模匹配法(MMT),傳輸線矩陣法(TLM)和有限元法(FEM)等。這些方法對處理各類電磁場問題是部分有效的,但都有所限制。相對而言,有限元法應用比較成熟,可以處理較多類型的電磁場問題,當然對計算機資源的要求也更高。基于有限元法的高頻結構仿真軟件HPHFSS為解決微波元件的分析方法提供了一種有效的手段。
  利用軟件優化設計過程實際上是一個加工調試的仿真過程,可以把過去用實驗方法確定的尺寸用計算機分析得到。側臂優化的計算量大,由于側臂尺寸對直通口性能影響較小而且側臂匹配的難度較大,對直通口的匹配影響可以選擇特定的元件來達到減小的目的。優化側臂的模型可利用其對稱性來減少計算量,彎波導優化后的駐波優于1.02。扭波導優化后的駐波優于1.04。
  微波元件性能的穩定性是設計的另一個重要目標之一。通常情況下,對于非諧振結構微波元件來說,尺寸對性能影響是平緩的(非激烈變化的),利用微擾結構尺寸的方法可達到檢驗計算結果,確定制造公差的目的。特別是對性能影響很大的尺寸公差的確定是很有必要的,可為合理分配公差,降低制造成本提供科學依據。
  3.饋源系統的優化設計方法
  饋源系統的性能優化是一個十分復雜的問題,各部分的尺寸變化都會影響性能。由于受計算機資源的限制,對整個饋源系統進行優化設計是困難的,采用對各微波元件進行優化設計后,再對各微波元件的連接關系(接口位置)進行優選,可以得到較好的系統性能。例如,喇叭的最大的回波損耗為-34dB,正交器的最大回波損耗為-32dB,通過優選喇叭與正交器的連接尺寸后,正交器加喇叭合成后最大回波損耗為-32.5dB。

三、 計算與實測性能

  喇叭優化后的VSWR和方向圖結果如圖 3所示,方波導正交器優化后的VSWR結果如圖 4所示,對正交器中的主要結構尺寸加微擾(尺寸加公差)后計算的VSWR如圖 5所示。從仿真結果來看,正交器中的主要結構尺寸的公差要求在+0.2%~+0.4%是適當的。整個饋源系統的VSWR結果如圖 6所示,它的交叉極化鑒別率如圖 7所示。

t51-1.gif (7575 bytes)

圖 3 喇叭優化后的VSWR和方向圖

t52-1.gif (7453 bytes)

圖 4 方波導正交器優化后的VSWR

t52-2.gif (8889 bytes)

圖 5 正交器中主要結構尺寸加微擾后的VSWR

t52-3.gif (10639 bytes)

圖 6 饋源系統的VSWR

t52-4.gif (5552 bytes)

圖 7 饋源系統的交叉極化鑒別率

四、 結 論

  本文介紹了C波段超高性能微波天線的饋源系統的設計方法。給出了計算和實測結果,提出了利用高頻結構仿真軟件確定微波元件制造公差的方法。整個系統的駐波優于1.05,交叉極化隔離優于40dB。該饋源系統已很好地應用于3.2m的微波中繼天線。

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久久久综合激的五月天| 免费久久99精品国产自| 久久精品夜色噜噜亚洲a∨| 一区二区三区 在线观看视| 亚洲国产欧美日韩| 在线电影国产精品| 伊人成人开心激情综合网| 国模叶桐国产精品一区| 国产日韩欧美中文在线播放| 国产精品资源在线观看| 国产精品性做久久久久久| 国产精品久久久久久久7电影| 欧美日韩亚洲一区二区三区| 欧美日韩国产黄| 欧美日韩国产黄| 欧美色视频一区| 国产精品国产三级国产普通话三级| 欧美日韩一区二区三区在线| 欧美日韩网址| 国产精品乱码妇女bbbb| 国产精品久久久久一区二区| 国产精品video| 国产精品久久久久久久午夜| 国产精品一区二区女厕厕| 国产伦精品一区二区三区照片91 | 好吊妞**欧美| 一区一区视频| 亚洲欧洲精品成人久久奇米网| 亚洲高清视频的网址| 亚洲精品乱码久久久久久| 亚洲毛片在线观看| 亚洲网站啪啪| 午夜日韩视频| 最新国产乱人伦偷精品免费网站| 日韩亚洲视频| 亚洲欧美日韩中文在线制服| 久久精品二区三区| 美女黄毛**国产精品啪啪| 欧美人与性动交α欧美精品济南到| 欧美日韩精品高清| 国产精品视频久久一区| 国产日韩欧美精品一区| 经典三级久久| 99精品视频免费观看视频| 亚洲自拍偷拍一区| 亚洲大片精品永久免费| 99国产精品99久久久久久| 亚洲欧美自拍偷拍| 久久综合久久美利坚合众国| 欧美男人的天堂| 国产精品色婷婷| 在线视频观看日韩| 正在播放亚洲一区| 久久精品一区四区| 在线亚洲一区| 久久久中精品2020中文| 欧美人妖在线观看| 国产手机视频精品| 亚洲人成网站在线观看播放| 亚洲欧美日韩国产一区二区三区| 亚洲国产精品第一区二区三区| 这里只有精品丝袜| 久久久国产一区二区三区| 欧美人与性动交a欧美精品| 国产欧美精品日韩区二区麻豆天美| 永久免费毛片在线播放不卡| 中文亚洲欧美| 最新国产成人av网站网址麻豆| 亚洲一区在线看| 久久综合狠狠综合久久综合88 | 99精品国产在热久久婷婷| 性8sex亚洲区入口| 99精品视频网| 久久婷婷丁香| 欧美性猛片xxxx免费看久爱| 黄色精品一区二区| 亚洲欧美春色| 一区二区久久久久久| 久久综合久久久| 国产精品亚洲а∨天堂免在线| 亚洲国产乱码最新视频| 性色一区二区| 中日韩视频在线观看| 麻豆国产精品va在线观看不卡| 国产精品你懂的在线| 亚洲日本国产| 亚洲国产一区二区三区a毛片 | 一区二区高清| 日韩亚洲欧美精品| 免费日韩av电影| 国产美女一区| 亚洲视频一区在线观看| 99成人精品| 欧美freesex交免费视频| 国产亚洲欧美日韩精品| 亚洲午夜视频在线观看| 在线午夜精品自拍| 欧美成人免费全部| 韩国在线视频一区| 亚洲欧美日韩一区二区三区在线观看| 一区二区三区蜜桃网| 欧美国产高潮xxxx1819| 狠狠色狠狠色综合人人| 香蕉免费一区二区三区在线观看 | 欧美日韩国产123| 亚洲高清在线精品| 久久成人在线| 久久久91精品国产一区二区三区 | 黄色成人免费网站| 欧美一区日韩一区| 久久丁香综合五月国产三级网站| 国产精品捆绑调教| 亚洲视频精品| 亚洲综合色自拍一区| 国产精品v日韩精品v欧美精品网站| 亚洲伦理在线观看| 一区二区三区国产在线| 欧美日韩成人综合在线一区二区| 91久久久久久久久| 日韩一级在线观看| 欧美日韩一级大片网址| 一本色道久久综合狠狠躁的推荐| 中文久久精品| 欧美性理论片在线观看片免费| 一本久久a久久精品亚洲| 亚洲一级黄色片| 国产精品久久久久影院色老大 | 亚洲日本中文字幕| 欧美www在线| 亚洲日本va在线观看| 夜夜精品视频| 欧美性理论片在线观看片免费| 亚洲一区不卡| 久久国产精品99国产精| 国内揄拍国内精品少妇国语| 亚洲国产高清一区| 欧美/亚洲一区| 亚洲美女视频在线免费观看| 亚洲视频网在线直播| 国产精品久久毛片a| 亚洲欧美日韩综合国产aⅴ| 久久久久久久性| 亚洲高清一区二| 一区二区三区黄色| 国产精品丝袜91| 欧美中文在线观看国产| 免费日韩成人| 妖精视频成人观看www| 午夜精品久久| 一区二区在线看| 在线亚洲欧美| 国产精品资源在线观看| 国产精品网站在线播放| 亚洲国产精品999| 亚洲视频第一页| 国产日韩欧美在线一区| 亚洲国产成人久久综合一区| 欧美日本精品| 亚洲欧美成人精品| 免费不卡亚洲欧美| 亚洲一区二区三区四区五区午夜| 亚洲精品少妇| 亚洲一区二区三区中文字幕| 国产精品夜夜夜| 亚洲第一综合天堂另类专| 欧美日韩播放| 亚洲欧美一区二区三区在线| 欧美~级网站不卡| 中文久久精品| 久久天堂成人| 亚洲精品日本| 久久国产福利| 亚洲激情一区二区| 欧美一区1区三区3区公司| 亚洲二区精品| 欧美在线短视频| 亚洲免费av电影| 久久久美女艺术照精彩视频福利播放| 亚洲精品国产精品久久清纯直播 | 亚洲一区二区免费在线| 蜜臀va亚洲va欧美va天堂| 亚洲视频狠狠| 欧美国产高清| 销魂美女一区二区三区视频在线| 欧美激情视频网站| 欧美一区二区私人影院日本| 欧美日韩国产大片| 久久国产主播精品| 国产精品久久91| 亚洲精品一区二区三区四区高清| 国产精品人人做人人爽| 亚洲精品日韩欧美| 国产日韩欧美高清| 亚洲已满18点击进入久久| 亚洲高清视频在线观看| 久久精品久久99精品久久| 一区二区动漫| 欧美激情91| 亚洲国产精品久久精品怡红院| 国产精品性做久久久久久|