《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 超高性能微波天線饋源系統的設計 .
超高性能微波天線饋源系統的設計 .
摘要: 本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。
Abstract:
Key words :

  本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。計算結果與實測結果吻合的較好,在4.4~5GHz的頻段中,整個饋源系統的駐波優于1.05,交叉極化鑒別率優于-40dB。

  關鍵詞:超高性能饋源系統 高頻結構仿真軟件

一、 概 述

  近幾年來,我國通信事業的飛速發展,微波接力通信天線也不斷地發展和完善,衛星通信系統的傳送網功能主要通過光纖,地面微波,空中衛星等通信方式來完成。從微波傳送系統所采用的新技術及傳送容量的角度來看,新一代的同步數字系列SDH微波通信系統替代了傳統意義上的PDH微波通信。為適應正在興起的SDH微波通信中頻率復用的發展,我們需要研制超高性能的微波天線。它應具有很高的前后比(F/D),很高的交叉極化鑒別率(XPD)和極低的電壓駐波比(VSWR)。因此,超高性能微波天線系統具有低的電壓駐波比(VSWR優于1.06或反射損耗大于30.7dB)和高的交叉極化鑒別率(大于38dB)。

二、 系統組成

  超高性能微波天線的饋源系統是由喇叭,正交器,扭波導,彎波導和波導饋線組成。其中喇叭和正交器是關鍵部件。
  1.喇叭
  適合超高性能微波天線的饋源的喇叭有多種[1][2]。本饋源采用帶有三個扼流槽的平面波紋喇叭,這種平面波紋喇叭具有旋轉對稱的方向圖,低的副瓣,低的交叉極化和穩定的相位中心。喇叭的結構如圖 1所示。它是由一個圓波導和三個同心圓環構成。為了改善喇叭的駐波特性,我們在喇叭口附近對稱地放置調配塊。為了防止異物等進入喇叭,需對喇叭口進行封閉。通常在喇叭口上加介質薄膜,一般介質薄膜均會使喇叭的駐波變壞,我們利用高頻仿真軟件對介質的位置與厚度進行調整,使之具有改善駐波的特性。優化后的喇叭駐波優于1.05。

t49-1.gif (4229 bytes)

圖 1 喇叭結構

  2.正交器
  在現代天饋系統中,頻率復用技術是利用頻率資源最經濟的方法之一,可達到擴大通信容量的目的。正交極化頻率復用技術是用雙極化天線來實現的,即在同一頻率上,利用極化正交特性傳輸兩路獨立的信號。正交極化頻率復用技術有兩種,即雙線極化和雙圓極化[3]。正交極化的合成和分離是在饋電系統中實現的。雙線極化頻率復用是用正交模耦合器(OMT)也稱極化分離器(簡稱正交器)完成的。
  正交器是常用的微波元件,但介紹其設計方法的文獻較少[4]。普通的正交器(如圖 2所示)雖然只表現為三個物理端口,但就電氣上來說是四端口器件。這是由于公共端口中有兩個正交的主模(圓波導中的TE11/TE*11?;蚍讲▽У腡E10/TE01模)與其他兩個端口中各自的基模(矩形波導的TE10?;蛲S線中的TEM模)匹配。
  正交器的作用是分離公共端口中兩個正交主模的獨立信號并將它們傳給單一信號端口的基模,使所有電端口匹配且在兩個獨立信號之間有高的交叉極化鑒別力。因此,理想正交器的散射矩陣為

gs5001.gif (1483 bytes)

  這里端口1和2代表位于物理公共端口的主模,端口3和4是基模接口,例如,分別在端口1與端口3和端口2與端口4之間提供直接連接。其相移滯后分別為φ1和φ2。
  正交器的形式有多種,其性能略有差異。一般主波導的形式有圓波導和方波導,在寬頻帶應用時也可采用四脊波導。與分支波導(也稱側臂)耦合的耦合孔的位置在錐縮(漸變或階梯)部分,也有用膜片或隔離柵短路耦合的。本文所介紹的正交器是在較窄的工作頻帶(10%~20%)內滿足高性能和低成本的要求。對高性能而言是要求有較小的反射損耗(VSWR)和高隔離(端口隔離和極化隔離);低成本則要求結構簡單,加工方便。
  為了保證正交器的性能,其最低工作頻率應滿足fmin>1.1fc。這樣圓波導正交器的最大工作帶寬約為17%,方波導正交器的最大工作帶寬約為25%。在這樣的帶寬內正交器隔離性能僅受結構尺寸和加工對稱性的影響。如果大于最高工作頻率,由于高次模的影響,正交器的隔離性能將變差。
  正交器的設計的準則是抑制高次模的產生,簡化結構,保證結構的對稱性,用較少的匹配元件實現各個端口的匹配。
  正交器設計的關鍵是方形或圓形波導分支耦合器的結構及兩個基模端口的匹配部分。我們所設計的正交器采用如圖 2所示的形式。整個設計過程中首先確定方波導的尺寸,然后設計直通口的方矩波導階梯過渡。最后確定側臂耦合孔位置。選取耦合孔的大小與位置應以盡可能減小對直臂的影響又能很好地耦合極化信號為宜。由于側臂耦合結構變量較多,對性能影響很大,優化側臂尺寸是十分必要的。

t50-1.gif (1580 bytes)

圖 2 C波段正交器

  對微波元件來說,通過求解Maxwell方程這一古典的方法來獲得其特性是困難的。由于高速度大容量計算機的出現。促進了各種數值分析方法的發展。在電磁場問題的數值計算領域出現了多種方法,如有限時域差分法(FDTD),模匹配法(MMT),傳輸線矩陣法(TLM)和有限元法(FEM)等。這些方法對處理各類電磁場問題是部分有效的,但都有所限制。相對而言,有限元法應用比較成熟,可以處理較多類型的電磁場問題,當然對計算機資源的要求也更高?;谟邢拊ǖ母哳l結構仿真軟件HPHFSS為解決微波元件的分析方法提供了一種有效的手段。
  利用軟件優化設計過程實際上是一個加工調試的仿真過程,可以把過去用實驗方法確定的尺寸用計算機分析得到。側臂優化的計算量大,由于側臂尺寸對直通口性能影響較小而且側臂匹配的難度較大,對直通口的匹配影響可以選擇特定的元件來達到減小的目的。優化側臂的模型可利用其對稱性來減少計算量,彎波導優化后的駐波優于1.02。扭波導優化后的駐波優于1.04。
  微波元件性能的穩定性是設計的另一個重要目標之一。通常情況下,對于非諧振結構微波元件來說,尺寸對性能影響是平緩的(非激烈變化的),利用微擾結構尺寸的方法可達到檢驗計算結果,確定制造公差的目的。特別是對性能影響很大的尺寸公差的確定是很有必要的,可為合理分配公差,降低制造成本提供科學依據。
  3.饋源系統的優化設計方法
  饋源系統的性能優化是一個十分復雜的問題,各部分的尺寸變化都會影響性能。由于受計算機資源的限制,對整個饋源系統進行優化設計是困難的,采用對各微波元件進行優化設計后,再對各微波元件的連接關系(接口位置)進行優選,可以得到較好的系統性能。例如,喇叭的最大的回波損耗為-34dB,正交器的最大回波損耗為-32dB,通過優選喇叭與正交器的連接尺寸后,正交器加喇叭合成后最大回波損耗為-32.5dB。

三、 計算與實測性能

  喇叭優化后的VSWR和方向圖結果如圖 3所示,方波導正交器優化后的VSWR結果如圖 4所示,對正交器中的主要結構尺寸加微擾(尺寸加公差)后計算的VSWR如圖 5所示。從仿真結果來看,正交器中的主要結構尺寸的公差要求在+0.2%~+0.4%是適當的。整個饋源系統的VSWR結果如圖 6所示,它的交叉極化鑒別率如圖 7所示。

t51-1.gif (7575 bytes)

圖 3 喇叭優化后的VSWR和方向圖

t52-1.gif (7453 bytes)

圖 4 方波導正交器優化后的VSWR

t52-2.gif (8889 bytes)

圖 5 正交器中主要結構尺寸加微擾后的VSWR

t52-3.gif (10639 bytes)

圖 6 饋源系統的VSWR

t52-4.gif (5552 bytes)

圖 7 饋源系統的交叉極化鑒別率

四、 結 論

  本文介紹了C波段超高性能微波天線的饋源系統的設計方法。給出了計算和實測結果,提出了利用高頻結構仿真軟件確定微波元件制造公差的方法。整個系統的駐波優于1.05,交叉極化隔離優于40dB。該饋源系統已很好地應用于3.2m的微波中繼天線。

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久久www成人_看片免费不卡| av成人天堂| 亚洲精选一区二区| 精品动漫3d一区二区三区免费版 | 亚洲国产日韩一区| 欧美亚洲视频| 欧美一区二区三区精品| 亚洲嫩草精品久久| 亚洲欧美一区二区激情| 午夜精品国产| 欧美一区国产二区| 欧美一站二站| 久久丁香综合五月国产三级网站| 小处雏高清一区二区三区| 午夜精品福利一区二区蜜股av| 亚洲淫性视频| 欧美一级播放| 久久精品国产99精品国产亚洲性色 | 黄色资源网久久资源365| 国语自产精品视频在线看抢先版结局 | 欧美成人中文字幕| 欧美大片一区二区| 欧美精品18videos性欧美| 欧美日本在线播放| 国产精品成人v| 国产精品久久久久久久久久三级| 国产精品户外野外| 国产伦精品一区二区三区照片91 | 日韩视频第一页| 一区二区激情| 亚洲男人的天堂在线| 欧美在线观看网站| 亚洲欧洲精品天堂一级| 亚洲人成久久| 一区二区三欧美| 亚洲一区二区在线看| 午夜精品久久| 久久久亚洲高清| 欧美电影免费观看高清| 欧美日韩一区二区在线| 国产精品久久久久久久久果冻传媒 | 国产欧美精品国产国产专区| 国内自拍一区| 亚洲区中文字幕| 亚洲一区久久| 亚洲福利在线观看| 欧美视频一区在线观看| 欧美精品电影| 久久久久久91香蕉国产| 欧美 亚欧 日韩视频在线| 欧美日韩国产另类不卡| 国产欧美短视频| 亚洲国产精品尤物yw在线观看 | 亚洲一区二区三区四区视频| 久久国产88| 一区二区三区精品视频在线观看 | 欧美国产1区2区| 国产精品久久久久久影视 | 一色屋精品视频在线观看网站| 亚洲精品视频免费| 小黄鸭视频精品导航| 日韩天堂在线视频| 欧美一区二区日韩| 欧美精品三级日韩久久| 国产日韩精品一区二区三区在线| 亚洲国产欧美国产综合一区| 亚洲综合不卡| 99国产精品| 久久久久久久久综合| 欧美日韩日日骚| 一区二区三区自拍| 亚洲一区二区三区四区在线观看| 亚洲国内自拍| 欧美一区免费| 欧美日韩日本国产亚洲在线| 黄色成人在线免费| 亚洲午夜精品在线| 亚洲免费大片| 久久蜜臀精品av| 国产精品理论片| 亚洲日本电影在线| 久久精品视频在线观看| 午夜久久资源| 欧美日韩视频在线第一区| 激情五月***国产精品| 亚洲欧美电影在线观看| 一本久道久久综合中文字幕| 久久香蕉国产线看观看av| 国产精品久久久久av免费| 亚洲人成久久| 亚洲国产天堂久久综合| 久久精品国产亚洲一区二区三区| 欧美日韩一区不卡| 亚洲国产一区二区视频| 久久国产精品久久国产精品| 午夜一区二区三区在线观看| 欧美日韩高清在线| 亚洲欧洲精品一区二区精品久久久| 久久av红桃一区二区小说| 欧美一级淫片播放口| 国产精品v欧美精品∨日韩| 亚洲人成绝费网站色www| 91久久极品少妇xxxxⅹ软件| 久久久久国产精品一区三寸| 国产精品视频1区| 亚洲天堂男人| 亚洲在线视频观看| 欧美色精品在线视频| 亚洲免费观看高清完整版在线观看熊| 亚洲三级影片| 欧美成人综合| 亚洲国产三级网| 亚洲精品欧美在线| 欧美韩日一区二区三区| 亚洲电影自拍| 亚洲人成人77777线观看| 老司机午夜精品视频| 合欧美一区二区三区| 久久国产精品第一页| 久久性天堂网| 一区精品久久| 亚洲欧洲一区二区在线观看| 欧美阿v一级看视频| 亚洲国产高清在线| 亚洲精品一区二| 欧美日韩精品免费| 亚洲电影在线免费观看| 999亚洲国产精| 一区二区三区欧美激情| 欧美日韩福利| 在线视频一区二区| 午夜亚洲视频| 国产日韩欧美在线| 久久精品国产免费观看| 蜜臀91精品一区二区三区| 亚洲高清视频一区| aa亚洲婷婷| 国产精品国产三级国产普通话蜜臀 | 亚洲精品午夜| 亚洲一区二区三区在线观看视频 | 国产日韩亚洲欧美| 欧美中日韩免费视频| 看片网站欧美日韩| 亚洲国产精品va在看黑人| 99re亚洲国产精品| 欧美天堂亚洲电影院在线观看 | 久久精品国产第一区二区三区| 美女福利精品视频| 亚洲精品一区在线| 亚洲欧美日韩国产精品| 国产日本欧美一区二区| 亚洲国产精品高清久久久| 欧美极品在线播放| 亚洲视频第一页| 久久久久久久久岛国免费| 亚洲国产高清在线| 亚洲一区二区网站| 国产在线欧美| 99天天综合性| 国产欧美一区视频| 亚洲精品黄网在线观看| 欧美性猛交xxxx免费看久久久 | 久久激情中文| 欧美另类变人与禽xxxxx| 亚洲视频中文字幕| 久久综合伊人77777蜜臀| 亚洲级视频在线观看免费1级| 亚洲一区二区日本| 国产一区二区三区电影在线观看| 亚洲人成在线观看一区二区| 国产精品久久7| 91久久久久久久久| 欧美午夜性色大片在线观看| 亚欧美中日韩视频| 欧美日韩精品一区二区| 欧美在线网址| 欧美日韩日本国产亚洲在线| 欧美影院在线播放| 欧美日韩一区成人| 亚洲福利视频网站| 国产精品www色诱视频| 亚洲国产精品一区二区三区| 欧美午夜一区二区三区免费大片| 久久精品欧美日韩精品| 欧美色区777第一页| 91久久精品一区| 国产伦精品一区二区三区高清版| 亚洲精品中文在线| 国产深夜精品| 亚洲午夜精品久久久久久浪潮 | 欧美亚洲一区二区在线观看| 亚洲电影下载| 久久av一区二区三区| 黄色成人免费观看| 这里只有精品视频| 曰韩精品一区二区| 欧美在线视频日韩| 99ri日韩精品视频| 欧美jizz19性欧美| 欧美一区二区黄|