《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于徑向基函數神經網絡的網絡流量識別模型
基于徑向基函數神經網絡的網絡流量識別模型
來源:微型機與應用2012年第2期
劉 曉
(暨南大學 信息科學與技術學院,廣東 廣州510000)
摘要: 提出了一種基于徑向基函數神經網絡的網絡流量識別方法。根據實際網絡中的流量數據,建立了一個基于RBF神經網絡的流量識別模型。先介紹了RBF神經網絡的結構設計及學習算法,針對RBF神經網絡在隱節點過多的情況下算法過于復雜的缺點,采用了優化的算法計算隱含層節點。仿真實驗證明,該模型具有較好的準確率、低復雜度、高識別效果和良好的自適應性。
Abstract:
Key words :

摘  要: 提出了一種基于徑向基函數神經網絡的網絡流量識別方法。根據實際網絡中的流量數據,建立了一個基于RBF神經網絡的流量識別模型。先介紹了RBF神經網絡的結構設計及學習算法,針對RBF神經網絡在隱節點過多的情況下算法過于復雜的缺點,采用了優化的算法計算隱含層節點。仿真實驗證明,該模型具有較好的準確率、低復雜度、高識別效果和良好的自適應性。
關鍵詞: RBF神經網絡;流量識別;流量分類

    隨著互聯網業務量的急劇增長,網絡性能和服務質量方面的問題日益突出。在網絡資源有限的情況下,建立網絡流量模型,識別網絡流量,及時作出控制或者調整,將會極大提高網絡性能和服務質量。尤其是隨著近年來互聯網技術的發展,網絡主要流量已經由傳統的FTP、TELNET和HTTP向P2P和IM服務轉變。傳統的網絡流量識別方法已經不能滿足當前網絡發展的需求。
    神經網絡對非線性函數關系具有良好的逼近能力,所以本文提出了一種基于RBF函數神經網絡的網絡流量模型。RBF神經網絡為局部神經網絡模型,計算速度快、實時性好,相對于傳統的線性流量模型具有更高的逼近能力和良好的自適應性,并可克服基于BP神經網絡的流量模型訓練時間長及計算復雜度高的不足。
1 RBF神經網絡結構及學習算法
1.1 RBF神經網絡結構

    RBF神經網絡是20世紀80年代由MOODY J和DARKEN C提出的一種神經網絡模型,是具有單隱層的前饋網絡,屬于局部逼近網絡,已證明能以任意精度逼近任一連續函數。RBF神經網絡的結構如圖1所示。
    網絡由輸入層、徑向基函數隱含層、輸出層三層構成。低維空間非線性可分的問題總可以映射到一個高維空間,使其在此高維空間中為線性可分[1]。RBF的輸出單元部分構成一個單層感知機,只要合理選擇隱單元數(高維空間的維數)和作用函數,就可以把原來的問題映射為一個線性可分問題[2]。RBF網絡中輸入到隱含層的映射是非線性的,而隱含層到輸出的映射是線性的。隱含層的節點數與實際問題的要求有直接的關聯,過多的節點數會導致學習時間過長和低容錯率,所以必須優化隱含層的節點數。隱含層的節點數可以采用式(1)計算:

2 識別過程
    流量識別過程分為四個部分:數據獲取過程、數據預處理過程、數據訓練過程和測試數據分類過程。重點在于建立一個RBF神經網絡模型對網絡流量進行分類。
    (1)數據獲取過程是通過數據獲取模塊提取網絡連接記錄和分析特征,以選擇合適的網絡特征屬性作為原始的輸入值。選擇一組最合適的特征子集作為RBF神經網絡的原始輸入值。
    (2)數據預處理過程是將特征子集映射到[-1,1]的范圍[4]。
    (3)數據訓練過程是將經過預處理后的網絡流量特征子集作為RBF神經網絡模型的訓練集。
    (4)根據RBF神經網絡的輸出對網絡流量進行分類。
3 試驗與分析
    本文選用流量文庫http://newsfeed.ntcu.net/中給出的兩組實際數據進行實驗,兩組數據分別如表1、表2所示。

 

 

    RBF網絡在數據一中采用248個輸入層節點、262個隱含層節點和11個輸出層節點的結構;在數據二中采用248個輸入節點、260個隱含層節點和8個輸出層節點的結構。實驗結果如表3所示。

    本文提出了一種基于RBF神經網絡的網絡流量識別方法。通過測試兩組開發的網絡流量數據集,證明該方法具有較高的準確度、低復雜性和良好的自適應性。
參考文獻
[1] Shi Zhongzhi.Neural Network[M].Beijing:Higher Education  Press,2009.
[2] COVER T M.Geometrical and statistical properties of  system of linear inequalities with applications in pattern  recognition[J].IEEE Transactions on Electronic Computer,1965(14):326-334.
[3] Fei Sike Technology R&D Center.Matlab Application[M].  Beijing:Electronic Industry Press,2005.
[4] MOORE A W,ZUEV D.Discriminators for use in flow-based classification[A].Intel Research,Cambridge,2005.
[5] 王俊松.基于Elman神經網絡的網絡流量建模及預測[J].計算機工程,2009(9):190-191.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 高清性色生活片97| ol丝袜高跟秘书在线观看视频| 欧美俄罗斯乱妇| 伊人影院中文字幕| 美女扒开尿口让男人捅爽| 国产免费久久精品99re丫y| 亚洲一区二区三区在线观看网站 | 最近中文国语字幕在线播放视频| 亚洲欧洲精品视频在线观看| 玉蒲团之天下第一| 国产成人精品综合在线| 91探花视频在线观看| 天天干天天拍天天射| 三极片在线观看 | 精精国产XXXX视频在线| 国产亚洲漂亮白嫩美女在线 | 情人伊人久久综合亚洲| 中文字幕精品亚洲无线码二区| 日韩日韩日韩日韩日韩| 亚洲AV无码成人专区| 欧美乱人妖大交xxxx| 加勒比综合在线| 美妇又紧又嫩又多水好爽| 国产一级理论免费版| 足本玉蒲团在线观看| 国产午夜鲁丝片AV无码| 91成人在线免费视频| 在线免费观看你懂的| 中文字幕无码不卡在线| 日本久久久免费高清| 久久国产免费观看精品3| 日韩精品欧美激情国产一区| 乱了嗯祖宗啊用力| 日韩精品无码人成视频手机 | 美女免费视频黄的| 国产90后美女露脸在线观看| 色偷偷888欧美精品久久久| 国产一区二区三区在线| 色噜噜亚洲男人的天堂| 四虎永久在线观看免费网站网址| 老头一天弄了校花4次|