《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于Hadoop的云端異常流量檢測與分析平臺
基于Hadoop的云端異常流量檢測與分析平臺
2015年電子技術應用第5期
肖體偉
內江職業技術學院,四川 內江641000
摘要: Hadoop系統作為一種開源的分布式云計算平臺已獲得廣泛應用,但其云端易受到各種威脅和攻擊,基于此,開發了一種基于Hadoop的云端異常流量檢查與分析平臺。首先,使用Mapper周期性地從所有存儲流量信息的文件中提取流量的部分信息;然后,通過Reducer將異常流量提取并保存。通過對流量數據的存儲、檢測與分析可成功地檢測出有威脅的攻擊,從而保障云端的安全。由于本平臺基于開源的Hadoop實現,因此成本較低;同時,基于Java語言實現,可成功移植于各種主流操作系統,具有廣泛適用性?;诰钟蚓W進行監控試驗,結果表明本平臺可成功地檢測出異常流量,并輸出友好的用戶界面。
中圖分類號: TP393.8
文獻標識碼: A
文章編號: 0258-7998(2015)05-0116-03
Hadoop based anomaly flow detection and analysis platform of cloud computing
Xiao Tiwei
Neijiang Vocational&Technical College,Neijiang 641000,China
Abstract: Hadoop system is an open source distribute cloud computing and is applied to a lot of services, the servers is easily attacked, based on that, an anomaly flow detection and analysis platform is developed based on the Hadoop system. Firstly, all the flow information is abstracted from all the files which store the flow information by Mapper period. Then, with Reducer,the anomaly flow information is abstracted and stored. By storing, detection and analysis of the flow data the attacks are detected and the security is protected. As the produced software platform is built based on Hadoop, the cost is very low. At the same time, based on Java language, the software can run on many operations. Experiments based on the real LAN show that the produced software can detect the anomaly flow successfully and has a good GUI.
Key words : cloud computing;Hadoop;distribution computing;anomaly flow;detection and analysis;network attack

     

0 引言

    隨著移動設備的普及,Internet網絡的數據量呈爆炸式增長,服務端的數據流量隨之增加。為了成功和有效地利用流量數據,需要對數據進行處理與分析。目前許多攻擊(如DDoS、PDoS)可對云端及網絡造成毀滅性打擊[1],因此對此類攻擊的檢測與阻止極為重要,通過異常流量檢測來檢測此類攻擊是一個重要方法[2]。

    Hadoop是一種應用極為廣泛的大規模分布式數據處理系統[3],其可有效地擴展數據存儲空間,采用平行化計算提高了數據的計算處理能力,并實現了MapReduce的云計算編程模型[4]。盡管已有較多的異常流量分析方案,但極少有基于云計算云端的異常流量檢查方案。

    本文基于Hadoop平臺設計并構建了云端流量監控平臺,采用HDFS存儲大量的流量信息與異常流量信息,使用MapReduce進行分布式處理,提高了處理能力,較好地實現了對云端異常流量的監控,從而可防止對云端的攻擊行為,提高了云端的安全性。

1 相關技術

    基于隨機自相似過程[5]的異常流量檢測主要包括Hadoop、異常流量檢測以及自相似隨機過程三個部分。

1.1 Hadoop

    Hadoop是一個開源的軟件平臺,支持分布式數據存儲應用[6]。Hadoop主要由分布式存儲(HDF:Hadoop分布式文件系統)和分布式處理(MapReduce)兩部分組成。Hadoop框架分為MapReduce層和HDFS層[7]。

    MapReduce是一種將大規模數據集并行運算的編程模型。指定一個Map(映射)函數,將一組鍵值對映射成一組新的鍵值對;指定并發的Reduce(歸約)函數,以保證所有映射的鍵值對共享相同的鍵組。

1.2 異常流量檢測(IDS)

    IDS通過監控網絡與目標系統(檢測異常流量)來提高系統的安全性。異常流量檢測主要分為兩種類型:基于簽名的異常流量檢測系統(ST-IDS)[8]和基于異常的異常信息檢測系統(AT-IDS)[9]。ST-IDS利用已知的攻擊模型來檢測攻擊,通過預建立已知攻擊的簽名庫尋找相應攻擊;AT-ID通過檢測超過預設閾值的不正常數據行為檢測異常流量。ST-IDS僅對已有攻擊有效,對一些新的攻擊效果欠佳,因此本文采用AT-IDS方案。

1.3 自相似隨機過程

    許多自然與人造系統中均有LRD(Long-Range Dependence)的自相似過程,其中Internet網絡中的數據流量即為一種自相似隨機過程[10]。

wl1-gs1.gif

    目前,網絡流量已被嚴格定義為離散時間上的二階或近似二階統計的自相似過程。設{X1,X2,…}表示廣義平穩時間序列,其離散時間設為i=1,2,3…。設E[Xi]=EX,Var[Xi]=VarX,ρk=E[(Xi-EX)(Xi+k-EX)]/VarX分別表示該序列的均值、方差和滯后k偏自相關系數。

wl1-gs2-5.gif

2 現有問題與本文方案

2.1 現有問題與本平臺方案

    (1)大數據存儲:流量的實時監控將產生大量的流量數據,本方案采用HDFS和HBase將流量數據進行分布式存儲。

    (2)處理能力:需要極強的處理能力。本方案采用平行架構MapReduce。

    (3)數據的變化性:需要存儲結構化的數據、非結構化的數據以及不同形式(文本、圖像、視頻等)的數據。本方案采用非關系數據庫來存儲各種數據,如NoSQL。

2.2 本異常流量檢測與分析平臺

2.2.1 本平臺總體結構與程序設計

    圖1所示為LAN環境下的本監控平臺總體框架圖,主要模塊包括:數據收集模塊、存儲模塊、分析模塊和GUI模塊。本平臺基于Java語言實現。

wl1-t1.gif

    (1)數據收集模塊:利用SNS(如微博)公開的API或分布式文件收集工具來收集網頁數據、微博數據以及系統日志信息。

    (2)存儲模塊:對流量數據進行管理,并將數據以文件形式或裸數據格式進行存儲。

    (3)分析模塊:將分布式的數據進行分簇與聚類,對數據進行摘要提取、預測分析、自然語言處理、文本處理等,基于MapReduce實現AT-IDS來檢測異常流量。

    (4)GUI:將流量變化的實時狀態、統計結果以及控制界面友好地向用戶展示。

    圖2為本平臺的詳細結構圖,其主要功能是檢測與分析異常流量,同時也提供一些相關的附加功能,如網絡攻擊工具(可產生偽隨機數量的異常流量)。使用Jpcap分析網絡數據包,由于本平臺基于Java語言開發,因此本平臺是系統不相關的,可運行于Linux與Windows系統(只要安裝JVM即可)。Jpcap將網絡數據包的細節隱藏,將許多網絡數據包的類型和協議等信息提取成Java的類。Jpcap內部實現了LibPcap系統庫的API,本平臺通過JNI來調用Jpcap,從而提高了JAVA的運行速度。目前廣泛使用的AWT(窗口提取工具)和Swing的運行速度較慢,因此采用SWT(Standard Widget Toolkit)建立GUI控制界面,提高了系統的運行速度。

wl1-t2.gif

    圖3為本平臺檢測、分析、傳輸、顯示異常流量的程序框圖。

wl1-t3.gif

2.2.2 Map/Reduce設計

    圖4為本平臺的Map/Reducer程序,其功能是利用Map/Reduce將每天的流量信息以文件形式存儲于HDFS中。首先,使用Mapper周期性地從所有存儲流量信息的文件中提取流量的部分信息(目錄、數據包協議、數據包數量、數據包大小等);然后通過Reducer提取異常流量并保存(可通過數據包大小來判斷異常流量)。

wl1-t4.gif

3 試驗與分析

3.1 流量變化界面展示

    圖5為軟件實時流量監控的流量變化界面,圖中所示曲線圖是監控端口每秒鐘流量的變化。通過協議獲得每個數據包的大小與數據包總數量,然后進行統計計算獲得每秒的總流量。將每秒的流量分為3種類型(正常流量、異常流量、混合流量)進行存儲,將每天的統計結果存儲于HDFS中。

wl1-t5.gif

3.2 對異常流量的監控性能量

    將DDoS攻擊注入局域網,用來測試本平臺的異常流量檢測性能。使用2個本監控平臺對同一個局域網中的同一個端口進行監控(共監控10 h),對其中一個監控平臺的輸入接口注入一段時間的DDoS攻擊。

    圖6所示為10 h受攻擊的端口流量變化統計結果。圖中可明顯看出受攻擊端口的流量變化劇烈,可見本平臺可實時反應出流量的狀態,并可檢測出異常流量。

wl1-t6.gif

4 結束語

    本文基于Hadoop設計并建立了云端流量監控平臺,采用HDFS存儲大量的流量信息與異常流量信息,使用MapReduce進行分布式處理,提高了處理能力,較好地實現了云端的異常流量的監控,從而可防止對云端的攻擊行為,提高了云端的安全性。通過對流量數據存儲、檢測與分析可成功檢測出有威脅的攻擊,保障了云端的安全。本平臺基于開源的Hadoop實現,成本較低,并且基于Java語言實現,可成功移植于各種主流操作系統,因此具有廣泛適用性。

參考文獻

[1] 張永錚,肖軍,云曉春,等.DDoS攻擊檢測和控制方法[J].軟件學報,2012,23(8):2058-2072.

[2] 陳鴻昶,程國振,伊鵬.基于多尺度特征融合的異常流量檢測方法[J].計算機科學,2012,39(2):42-46.

[3] 趙曉永,楊揚,孫莉莉,等.基于Hadoop的海量MP3文件存儲架構研究[J].計算機應用,2012,32(6):1724-1726.

[4] 李玉林,董晶.基于Hadoop的MapReduce模型的研究與改進[J].計算機工程與設計,2012,33(8):3110-3116.

[5] 高茜,馮琦,李廣俠.基于組合模型的自相似業務流量預測[J].計算機科學,2012,39(4):123-126.

[6] 凃云杰,白楊.基于Hadoop和雙密鑰的云計算數據安全存儲策略設計[J].計算機測量與控制,2014,22(8):2629-2631.

[7] 廖彬,于炯,張陶,等.基于分布式文件系統HDFS的節能算法[J].計算機學報,2013,36(5):1047-1064.

[8] 方瑩.基于應用層簽名特征的 P2P 流量識別[J].Computer Engineering and Applications,2012,48(3).

[9] 冶曉隆,蘭巨龍,郭通.基于主成分分析禁忌搜索和決策樹分類的異常流量檢測方法[J].計算機應用,2013,33(10):2846-2850.

[10] 王建榮.基于自相似特性的片上網絡流量分析與建模[D].成都:電子科技大學,2011.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
欧美精品午夜视频| 国语自产精品视频在线看8查询8 | 99国产精品视频免费观看一公开| 欧美在线视频一区二区| 午夜精品福利视频| 亚洲小说欧美另类社区| 一区二区三区免费看| 一区二区三区免费看| 一区二区三区免费观看| 在线视频中文亚洲| 一区二区欧美国产| 夜夜嗨一区二区三区| 一本久久知道综合久久| 一区二区三区免费看| 中文一区在线| 亚洲在线视频免费观看| 亚洲欧美视频在线观看视频| 午夜精品福利视频| 欧美一区二区三区在线观看视频| 午夜精品一区二区三区在线视| 亚洲午夜一区二区| 亚洲在线免费视频| 先锋影音久久久| 欧美专区亚洲专区| 91久久在线观看| 一区二区高清在线| 亚洲一区欧美激情| 午夜欧美视频| 久久国产黑丝| 美腿丝袜亚洲色图| 欧美日韩精品福利| 国产精品久久久久久久浪潮网站| 国产精品视频自拍| 国产一级揄自揄精品视频| 黄色亚洲在线| 亚洲精品久久久久久一区二区| 亚洲伦理在线观看| 亚洲一区二区免费看| 欧美一区二区在线免费观看| 久久精品国产久精国产思思| 亚洲精品国产品国语在线app| 夜夜嗨av一区二区三区四区| 亚洲欧美国产77777| 欧美在线视频一区二区| 老色批av在线精品| 欧美日本亚洲韩国国产| 国产精品福利久久久| 国产日韩欧美在线播放| 曰本成人黄色| 一本色道婷婷久久欧美| 欧美一级久久| 亚洲精品自在久久| 午夜精品视频在线| 久久综合亚州| 国产精品高清在线观看| 国产一区二区三区四区五区美女| 亚洲国产专区| 亚洲免费婷婷| 亚洲毛片在线看| 翔田千里一区二区| 欧美高清在线播放| 国产欧美日韩不卡免费| 亚洲国产精品美女| 亚洲自拍偷拍网址| 亚洲精选在线观看| 久久国产精品久久久| 欧美激情中文字幕一区二区| 国产精品视频免费观看www| 在线精品视频一区二区三四| 亚洲视频精品| 亚洲人成网站999久久久综合| 亚洲欧美综合| 欧美精品二区| 国产视频一区在线观看一区免费| 亚洲精品国精品久久99热| 午夜精品在线| 亚洲色在线视频| 美女主播一区| 国产日韩精品久久| 一本久久综合| 999亚洲国产精| 久久久久免费| 国产精品国产成人国产三级| 亚洲国产精品久久久久婷婷884| 午夜精品久久久久久| 亚洲天堂激情| 欧美激情在线播放| 在线播放日韩| 久久精品视频va| 欧美亚洲日本网站| 欧美日韩一区二区欧美激情 | 麻豆久久久9性大片| 国产精品一级二级三级| 日韩视频―中文字幕| 亚洲高清视频在线| 久久se精品一区二区| 国产精品久久9| 99精品欧美一区二区三区| 亚洲精品一级| 免费观看30秒视频久久| 国内精品亚洲| 性做久久久久久久免费看| 亚洲女同精品视频| 欧美精品自拍偷拍动漫精品| 亚洲国产高潮在线观看| 亚洲国产精品成人综合| 久久国产精品久久久| 国产精品夜夜夜一区二区三区尤| 日韩午夜电影| 亚洲精品网址在线观看| 久久久亚洲高清| 国产日韩欧美在线看| 亚洲欧美日韩国产精品| 亚洲欧美制服另类日韩| 国产精品福利在线观看网址| 99精品视频免费全部在线| 夜夜爽99久久国产综合精品女不卡| 免费不卡在线观看| 一区在线视频| 亚洲欧洲中文日韩久久av乱码| 久久久久久一区二区三区| 国内外成人在线视频| 久久超碰97人人做人人爱| 久久精品国产亚洲aⅴ| 国产一区二区三区四区老人 | 亚洲国产精品精华液2区45| 久久男女视频| 在线观看视频欧美| 最新亚洲视频| 欧美精品二区| 一区二区成人精品 | 亚洲精品美女| 欧美日产国产成人免费图片| 亚洲精品一区二区三区樱花| 一本久道久久综合狠狠爱| 欧美精品久久一区| 99综合电影在线视频| 亚洲免费视频一区二区| 国产精一区二区三区| 久久爱www久久做| 欧美电影电视剧在线观看| 亚洲理论在线| 亚洲综合三区| 国产亚洲精品一区二555| 亚洲国产婷婷| 欧美日韩国产成人在线免费| 99精品国产在热久久| 性色av一区二区三区| 国产一区视频观看| 亚洲日本视频| 欧美视频日韩视频| 亚洲欧美激情一区二区| 老司机成人网| 一本久道综合久久精品| 久久精品1区| 亚洲人午夜精品| 性色一区二区三区| 在线观看一区视频| 亚洲伊人网站| 狠狠色狠狠色综合人人| 亚洲麻豆国产自偷在线| 国产精品视频福利| 最新中文字幕亚洲| 国产精品人成在线观看免费 | 亚洲一区二区视频| 国产欧美一区二区精品婷婷| 亚洲国产免费看| 欧美视频在线看| 欧美中文字幕不卡| 欧美日韩国产经典色站一区二区三区| 亚洲永久免费av| 欧美韩日一区二区| 亚洲男女毛片无遮挡| 牛人盗摄一区二区三区视频| 亚洲一区二区三区精品视频| 米奇777在线欧美播放| 在线亚洲免费| 久久久久国产精品人| 日韩视频一区二区三区| 欧美在线视频一区| 亚洲毛片网站| 老司机免费视频久久| 亚洲视频中文字幕| 欧美暴力喷水在线| 香蕉久久夜色精品| 欧美日韩免费在线| 亚洲第一在线视频| 国产精品高潮视频| 日韩网站在线观看| 国产在线精品成人一区二区三区| 亚洲视频图片小说| 亚洲黄色有码视频| 久久久五月婷婷| 亚洲制服欧美中文字幕中文字幕| 欧美激情一区二区三区在线视频观看 | 午夜精品久久久久久久99樱桃 | 免费观看久久久4p| 午夜电影亚洲| 欧美色图天堂网| 91久久久久久|