《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 針對光照變化的人臉識別算法研究
針對光照變化的人臉識別算法研究
2015年電子技術應用第5期
歐陽寧,鐘歡虹,袁 華,莫建文
桂林電子科技大學 信息與通信學院,廣西 桂林541004
摘要: 為了增強人臉識別對光照變化的魯棒性,提出了一種融合多方法的人臉圖像光照預處理算法。該算法首先根據改進的自適應平滑算法(IAS)估計出原圖像的亮度分量L,再用Retinex算法求得反射分量R,同時對原圖像進行局部對比度增強(LCE)處理來增強圖像細節;然后采用基于標準差(SD)的加權方法將多種方法有效融合起來;最后采用基于稀疏表示的分類(SRC)算法進行判別歸類。在Yale B人臉庫上的實驗表明,構造的算法識別率高于使用單一預處理算法,而且在訓練樣本單一、光照環境較差情況下也能取得很好的識別效果,對光照變化有較好的魯棒性。
中圖分類號: TP391.41
文獻標識碼: A
文章編號: 0258-7998(2015)05-0152-04
Study on face recognition algorithm against illumination change
Ouyang Ning,Zhong Huanhong,Yuan Hua,Mo Jianwen
School of Electronic and Technology,Guilin University of Electronic Technology,Guilin 541004,China
Abstract: In order to enhance the robustness of face recognition to illumination change, an illumination preprocessing algorithm of face image with fusing several algorithms is proposed. Firstly, the luminance component L is estimated from the original image according to the improved adaptive smoothing(IAS) algorithm, then reflection components R is obtained using Retinex algorithm. At the same time, the local contrast enhancement(LCE) algorithm is used to enhance image details. And the reweighted method based on the standard deviation(SD) is also adopted to calculate the weight and combine several algorithms effectively. Finally, sparse representation based classification(SRC) is used to classify. The experiment results on the Yale B face databases show that the proposed algorithm has higher recognition rate than the single pretreatment algorithm, and in the single training sample and poor lighting condition,this method can also achieve good recognition result, and has better robustness to illumination change.
Key words : face recognition;sparse representation;adaptive smoothing;local contrast enhancement;standard deviation

    

0 引言

    人臉識別是重要的生物特征識別技術之一,目前人臉識別已經取得了重大的進展,魯棒的主成分分析[1]、基于Gabor特征的魯棒稀疏編碼算法[2]、迭代加權的正規化魯棒編碼算法[3]和兩級非負稀疏表示方法[4]等一系列新算法已成功應用于人臉識別,隨之得到的產物也被應用在公共信息安全、金融等領域。然而,在人臉識別領域中仍有許多難題,例如光照問題一直是影響圖像質量的關鍵因素之一。

    近年來,研究者們提出了各種預處理算法來解決人臉識別中的光照問題。直方圖均衡化[5]、邊緣圖[6]和利用小波變換方法[7]提取光照不變特征,雖然能滿足實時要求,但是大部分不能解決陰影問題,難以取得理想效果。光照補償字典[8]的提出取得了很好的光照處理效果,但是該方法需要嚴格光照控制下的訓練圖像。Retinex理論中的單尺度Retinex算法(SSR)、多尺度Retinex算法(MSR)和自商圖像(SQI)[9]得到廣泛應用。這些Retinex算法的共同優點是不需要特定光照條件下的訓練樣本,在無強側光照時有較高的識別率,但在復雜光照條件下會出現陰影、光暈等現象。

    針對此情況,本文提出一種簡單易行的新的光照預處理算法,該方法考慮自適應平滑Retinex算法能很好地平滑光照人臉圖像且無邊緣增強效應,結合局部對比度增強算法對于增強圖像細節的優點,采用基于標準差

的融合方法,將分別由改進的自適應平滑Retinex算法處理和局部對比度增強處理后的兩幅圖像進行融合。在Yale B人臉庫上的實驗表明,該算法具有光照無關性,而且每一類只需要一個訓練樣本,在訓練樣本光照環境較差情況下也能取得較好的識別率。

1 改進的人臉識別算法

1.1 改進的的自適應平滑Retinex算法(IAS)

    為了解決Retinex算法容易出現光暈和虛影現象的難題,選用改進的自適應平滑算法[10]進行光照估計,主要原理是用一個3×3的模板反復迭代卷積平滑原圖像,迭代前L(0)(x,y)=I(x,y),即第t+1次迭代估計出的光照分量公式描述如下:

    jsj3-gs1-3.gif

其中,N(t)(x,y)是規范化因子;w(t)(x,y)是模板的系數,反映了每個點的灰度變化情況,是決定平滑效果的關鍵參數;g表示傳導函數,它是非負且單調遞減的函數,g(d(t)(x,y))隨著d(t)(x,y)的增大而趨向于0,傳導函數的性質決定了算法的平滑效果;d(t)(x,y)代表每個像素的變化程度。

    一般地,傳導函數在平滑的過程中會引起邊不同程度的邊緣銳化效應[10]。為了能同時達到平滑圖像且保證無邊緣增強效應的效果,本文采用新的傳導函數:

jsj3-gs4-10.gif

    τ(x,y)反映了當前像素點與其鄰域的不一致性程度。?贅代表像素點I(x,y)的鄰域,通常選取3×3;I(m,n)代表鄰域Ω的坐標。參數k1、k2的選擇參照文獻[10]。自適應平滑模板的系數為:

    jsj3-gs11.gif

    將w(x,y)代入式(1)和式(3)中,得到亮度分量L,代入Retinex算法中R(x,y)=log(I(x,y))-log(L(x,y))做對數域的減運算,便得到具有光照不變特征的反射分量R。

1.2 局部對比度增強算法(LCE)

    一般地,直方圖均衡化僅從整體角度改變數據的分布,不能有效突出圖像的細節特征。而LCE算法可以很好地改善圖像的細節特征的可視化,局部對比度增強變換的公式如下:

jsj3-gs12-13.gif

    本文選取5×5的鄰域,N是鄰域的像素總和。經過對比度增強變換,圖像數據的動態范圍被壓縮,由上述測量得到的局部對比值可正可負,所以需要對數據進行歸一化。假設Ymax和Ymin分別是所有局部對比值中的最大值和最小值,像素點(m,n)處的局部值進一步正規化為:

    jsj3-gs14.gif

1.3 基于標準差融合的新的光照無關算法

    圖1所示為Yale B人臉庫中5種光照條件下的人臉經不同方法處理后的效果圖。IAS算法處理后的圖像無陰影誤增強及虛影的現象,但圖像泛白嚴重,局部對比度減弱;LCE算法處理后的圖像增強了局部圖像細節,但對陰影的處理效果不佳。從以上分析可知,有必要尋求一種魯棒性強的人臉圖像光照預處理算法,既能兼顧上述算法的可取之處,又能巧妙地避免它們單獨使用的不足。

jsj3-t1.gif

圖像融合的特點正是通過一定的算法將兩個或兩個以上的圖像數據結合在一起,生成一個新的圖像。新圖像可以兼取多個原始圖像的信息優勢,并能描述所研究對象的較優化的信息特征。本文中的IAS算法對復雜光照環境下的人臉處理效果得到有效提高,但圖像仍然存在泛白、局部對比度減弱等缺點。與IAS算法相比,LCE算法可改善這些不足,有必要尋找一個合適的方法,將分別經過兩者處理的圖像盡可能和諧地融合在一起。由于兩個效果圖具有相同的內容,可以認為兩個分支的算法處理是相同的像素對應的灰度值映射到不同的區域,而對于整幅圖像的分布仍然類似。因此,只要找到合適的權重系數,就可以得到優良的融合結果。標準差(SD)描述每個像素灰度值與平均灰度值的離散程度,SD越大,則圖像的灰度值越離散,包含的信息越多。可以采用基于SD的加權平均方法計算融合的權重系數。假設p(i,j)表示點(i,j)處的灰度值,圖像I大小為M×N,則SD為:

jsj3-gs15-19.gif

1.4 算法流程

    綜上所述,本文算法的步驟為:

    (1)把Retinex算法經過改進,得到IAS預處理算法,原圖像I經過IAS算法處理,得到 ILAS

    (2)將原圖像I經過LCE算法進行處理,得到 ILCE

    (3)分別計算 ILAS和ILCE的標準差sd1和sd2,得到加權融合系數ω1和ω2,通過融合算法得到最終的光照無關人臉圖像F;

    (4)把最終的預處理結果用稀疏表示進行分類識別。

    圖1(d)為Yale B人臉庫中5種光照條件下的人臉經融合IAS和LCE兩種方法處理后的圖像,這些圖像清晰度高,特性明顯,有效去除光照,在光照變化劇烈情況下也能得到清晰的人臉圖像。

2 實驗結果及分析

    在識別實驗中,識別算法采用基于稀疏表示的分類(SRC)算法。為了驗證本文方法的有效性,選用Yale B人臉數據庫進行實驗仿真。由于本文只考慮光照問題,故只選擇10個個體的一種姿態在64種光照下的640幅圖像進行實驗。根據光源與鏡頭成的角度的不同將樣本分為5個集合[8]:0~12°為集合1,12~25°為集合2,25~50°為集合3,50~110°為集合4,其余為集合5。實驗中,所有圖像大小取84×84,訓練集為每人一幅均勻光照下的人臉,5個子集分別為測試樣本。

2.1 特征維數選擇

    由于圖像維數太大,需要對圖像進行降維,本文實驗中采用二維主成分分析(2D-PCA)對圖像進行特征提取。取每人一幅均勻光照下的人臉作為訓練集,其他作為測試集,維數d和識別率的關系如圖2所示。特征維數d在一定范圍內增加有利于提高識別率,但當d超過一定值時識別率不再增加,而且特征維數的加大將會導致計算量的增加。本文選擇特征維數為18。

jsj3-t2.gif

2.2 光照魯棒性實驗

    為了驗證本文算法對光照的魯棒性,除了與融合前的IAS和LCE算法對比,本文還和其他幾種常用的光照正規化方法相比較:SSR、MSR和SQI。實驗采用每人一幅均勻光照下的人臉作為訓練集,5個光照劇烈程度不一的子集分別作為測試集,識別結果如表1所示。從表1可看出,對于光照變化較平和的人臉(前3個子集),單獨使用IAS和LCE算法可以取得較好的識別率,但當測試樣本有劇烈的光照變化時(子集4和5),IAS和LCE算法的識別率都有較大幅度的下降,而對于融合后的新算法不管光照變化如何,都能得到較高的識別率。同時可以注意到,一般的光照正規化預處理算法在光照惡劣條件下識別率迅速退化。

jsj3-b1.gif

    為了進一步驗證本文融合算法對于光照的魯棒性,將文獻[8]中提出的人臉光照補償字典算法在Yale B人臉庫中進行測試,結果如表2所示。本文提出的算法具有更高的識別率,進一步證實了本算法對光照變化具有較好的魯棒性,同時由于節省了KSVD訓練字典的復雜步驟,所以相對于文獻[8]在時間上也有一定的優勢。

jsj3-b2.gif

    為了保證實驗結果不依賴于某種特定的訓練數據,分別從子集2~5中選擇訓練樣本并計算識別率,共進行4組實驗,實驗結果如圖3所示。圖3(a)為從子集2選擇每人一幅圖像作為訓練集,以此類推。結果表明IAS和LCE算法略優于其他光照糾正方法,而本文融合后的識別率始終最高,這進一步表明本文提出的算法有較強的光照魯棒性。

jsj3-t3.gif

3 結論

    本文針對光照變化影響人臉圖像的視覺效果以及識別率降低的問題,提出了一種基于融合IAS和LCE算法的光照無關人臉預處理算法。該算法采用基于標準差的融合方法將IAS算法和LCE算法相結合,在有效克服各自缺陷的同時兼顧了它們的優點。實驗結果表明,該算法與結合前的單一預處理算法、SSR、MSR、SQI以及文獻[8]中的算法相比,具有更好的光照糾正效果,并且有效地提高了光照復雜環境下的人臉識別率。

參考文獻

[1] LUAN X,FANG B,LIU L,et al.Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J].Pattern Recognition,2014,47(2):495-508.

[2] YANG M,ZHANG L,SHIU S C K,et al.Gabor feature based robust representation and classification for face recog nition with Gabor occlusion dictionary[J].Pattern Recognition,2013,46(7):1865-1878.

[3] YANG M,ZHANG L,YANG J,et al.Regularized robust coding for face recognition[J].Image Processing,IEEE Transactions on,2013,22(5):1753-1766.

[4] HE R,ZHENG W S,HU B G,et al.Two-stage nonnegative sparse representation for large-scale face recognition[J].Neural Networks and Learning Systems,IEEE Transactions on,2013,24(1):35-46.

[5] RAMIREZ-GUTIERREZ K,CRUZ-PEREZ D,OLIVARESMERCADO J,et al.A face recognition algorithm using eigenphases and histogram equalization[J].International Journal of Computers,2011,5(1):34-41.

[6] KARANDE K J,TALBAR S N.Independent component analysis of edge information for face recognition[M].Springer,2014.

[7] WU F.Face recognition based on wavelet transform and regional directional weighted local binary pattern[J].Journal of Multimedia,2014,9(8):1017-1023.

[8] LI Y,MENG L,FENG J.Face illumination compensation dictionary[J].Neurocomputing,2013(101):139-148.

[9] BIGLARI M,MIRZAEI F,EBRAHIMPOUR-KOMEH H.Illumination invariant face recognition using SQI and weighted LBP histogram[C].Pattern Recognition and Image Analysis(PRIA),2013 First Iranian Conference on.IEEE,2013:1-7.

[10] 葛微,李桂菊,程宇奇,等.利用改進的Retinex進行人臉圖像光照處理[J].光學精密工程,2010,18(4):1011-1020.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲淫片在线视频| 欧美 日韩 国产一区二区在线视频| 午夜在线a亚洲v天堂网2018| 亚洲美女av在线播放| 亚洲第一福利视频| 国模私拍视频一区| 国产欧美欧洲在线观看| 欧美视频在线观看一区| 欧美精品一区在线发布| 欧美成人日韩| 欧美成人精品三级在线观看| 久久阴道视频| 久久久久久69| 久久久福利视频| 久久精品国产99国产精品澳门| 午夜精品久久久久久久男人的天堂| 亚洲一区日韩在线| 亚洲天堂av高清| 亚洲在线观看免费视频| 亚洲影院在线| 午夜精品视频在线| 欧美一区1区三区3区公司| 亚洲在线观看视频网站| 亚洲欧美视频一区二区三区| 午夜精品久久久久久久蜜桃app| 亚洲欧美综合精品久久成人| 午夜精品一区二区在线观看 | 亚洲第一福利视频| 欧美一区二区免费观在线| 欧美中文字幕视频| 久久精品人人做人人爽电影蜜月| 久久精品99国产精品日本| 亚洲国产精品电影| 亚洲欧洲日韩在线| 日韩午夜电影av| 在线一区观看| 午夜精品久久久久久久久| 欧美亚洲免费| 久久免费观看视频| 免费国产一区二区| 欧美乱在线观看| 国产精品s色| 国产日韩视频| 在线观看视频一区二区| 亚洲精品美女在线观看| 正在播放亚洲一区| 欧美一区二区三区四区在线 | 好吊日精品视频| ●精品国产综合乱码久久久久| 亚洲成人在线观看视频| 亚洲日本aⅴ片在线观看香蕉| 9i看片成人免费高清| 亚洲天堂av综合网| 欧美专区在线观看一区| 亚洲久久在线| 亚洲素人一区二区| 久久久久国产精品厨房| 欧美激情综合| 国产精品视频在线观看| 国内精品模特av私拍在线观看| 最新国产の精品合集bt伙计| 亚洲私人影吧| 亚洲电影免费观看高清| 在线视频欧美一区| 久久精品在线免费观看| 欧美精品久久久久久久免费观看| 国产精品乱人伦一区二区| 在线观看国产成人av片| 夜夜夜久久久| 亚洲国产精彩中文乱码av在线播放| 一区二区三区四区精品| 久久久99国产精品免费| 欧美日韩国产一区二区三区地区| 国产欧美va欧美va香蕉在| 亚洲国产毛片完整版| 亚洲欧美日韩第一区| 亚洲免费大片| 久久精品噜噜噜成人av农村| 欧美日韩高清在线播放| 国内精品久久久久影院色| 99这里只有精品| 亚洲国产mv| 亚洲在线视频观看| 欧美成人免费小视频| 国产日韩精品入口| 一本久道久久综合中文字幕| 亚洲国产欧美在线| 性欧美精品高清| 欧美女人交a| 在线精品高清中文字幕| 亚洲欧美亚洲| 一区二区黄色| 欧美大秀在线观看| 国产一区日韩一区| 中文日韩电影网站| 亚洲精品一区二区在线观看| 久久久久国产一区二区三区| 欧美色精品在线视频| 亚洲国产精品久久久久秋霞蜜臀 | 性欧美超级视频| 亚洲制服av| 欧美日韩国产小视频| 亚洲国产精品v| 欧美一区在线看| 亚洲欧美亚洲| 欧美视频手机在线| 亚洲欧洲另类| 亚洲精品视频在线| 久久视频这里只有精品| 国产精品日本精品| 亚洲美女黄色| 99亚洲精品| 欧美激情1区| 在线免费观看日本欧美| 欧美在线免费观看| 久久精品91| 国产欧美va欧美va香蕉在| 亚洲中午字幕| 亚洲欧美影音先锋| 国产精品国产三级国产普通话99| 亚洲卡通欧美制服中文| 亚洲乱码国产乱码精品精可以看| 欧美18av| 最新成人av在线| 亚洲精品免费电影| 欧美va亚洲va香蕉在线| 伊人久久亚洲热| 亚洲国产成人久久综合一区| 久久久水蜜桃| 国产一区二区在线观看免费| 欧美一区二区在线| 久久久国产午夜精品| 国产在线视频欧美一区二区三区| 午夜精品一区二区三区在线| 欧美亚洲系列| 国产婷婷一区二区| 久久精品亚洲一区| 老司机精品久久| 在线观看视频日韩| 日韩视频在线你懂得| 欧美日韩91| 亚洲午夜激情网站| 久久精品国产第一区二区三区| 国产一区成人| 亚洲精品一区二区三区婷婷月| 欧美日韩妖精视频| 亚洲欧美一区二区精品久久久| 久久婷婷蜜乳一本欲蜜臀| 亚洲国产精品一区二区久| 在线一区观看| 国产欧美一区二区精品性色| 亚洲第一精品福利| 欧美精品在线观看一区二区| 国产精品99久久久久久久久| 久久精品一区二区三区四区| 亚洲第一主播视频| 中日韩在线视频| 国产亚洲精品久久飘花 | 久久大逼视频| 亚洲国产第一页| 亚洲一区bb| 国产一区二区中文| 日韩亚洲国产欧美| 国产精品揄拍一区二区| 亚洲大胆美女视频| 欧美日韩国产区| 午夜精品福利电影| 免费欧美日韩| 夜夜嗨av一区二区三区免费区| 久久aⅴ国产欧美74aaa| 在线电影一区| 99re6这里只有精品| 国产精品一区二区三区观看| 欧美一区亚洲二区| 亚洲欧美欧美一区二区三区| 影音先锋亚洲电影| 99国产精品久久久| 欧美午夜视频网站| 国产亚洲一区二区三区在线观看| 亚洲国产视频一区二区| 欧美日韩精品| 欧美一级夜夜爽| 欧美日韩一区精品| 亚洲女人天堂av| 欧美大片免费看| 亚洲午夜高清视频| 欧美国产国产综合| 亚洲一区二区三区在线看| 麻豆国产va免费精品高清在线| 一区二区在线观看视频| 亚洲欧美日韩一区二区三区在线| 国外成人在线视频| 一区二区三区产品免费精品久久75| 欧美三级第一页| 亚洲黄色大片| 国产精品视频九色porn| 亚洲国产一区在线| 国产一区亚洲| 宅男精品导航| 国内外成人在线视频|