《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 基于DFFT-WT-BP的光伏系統諧波檢測
基于DFFT-WT-BP的光伏系統諧波檢測
2019年電子技術應用第10期
孫 成1,黃 鈺2,朱劍平1,張保健1,張志遠1,王雅靜2
1.上海金智晟東電力科技有限公司,江蘇 南京210000;2.山東理工大學,山東 淄博255000
摘要: 現有的FFT-WT(Fast Fourier Transform-Wavelet Transform)算法與FFT-BP(Fast Fourier Transform-Back Propagation)算法都只是針對光伏系統中某些特定諧波的檢測時有優勢。對FFT-WT算法作了改進,提出一種DFFT-WT算法;對FFT-BP算法作了改進,提出了改進的FFT-BP模型。并在此基礎上將兩者結合,引入閾值區間來限制神經網絡迭代的搜索范圍,提出了一種基于DFFT-WT-BP(Double FFT-WT-BP)的檢測算法。仿真實驗表明,該算法能夠檢測實際光伏并網逆變系統中多種諧波共同構成的復雜諧波信號,并且精度更高,實用性更強。
中圖分類號: TP216
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.190014
中文引用格式: 孫成,黃鈺,朱劍平,等. 基于DFFT-WT-BP的光伏系統諧波檢測[J].電子技術應用,2019,45(10):71-75.
英文引用格式: Sun Cheng,Huang Yu,Zhu Jianping,et al. Harmonic detection of PV power generation system based on DFFT-WT-BP[J]. Application of Electronic Technique,2019,45(10):71-75.
Harmonic detection of PV power generation system based on DFFT-WT-BP
Sun Cheng1,Huang Yu2,Zhu Jianping1,Zhang Baojian1,Zhang Zhiyuan1,Wang Yajing2
1.Shanghai Sunest Electricity Technology Co.,Ltd.,Nanjing 210000,China; 2.Shandong University of Technology,Zibo 255000,China
Abstract: The existing FFT-WT algorithm and FFT-BP algorithm have advantages only for the detection of certain specific harmonics in photovoltaic systems. In this paper, the FFT-WT algorithm is improved, and a DFFT-WT algorithm is proposed. The FFT-BP algorithm is improved and an improved FFT-BP model is proposed. On the basis of this, the two are combined, the threshold interval is introduced to limit the search scope of the neural network iteration, and a DFFT-WT-BP(Double FFT-WT-BP) detection algorithm is proposed. The simulation results show that the algorithm can detect complex harmonic signals composed of multiple harmonics in the actual photovoltaic network inversion system, and is more accurate and practical.
Key words : photovoltaics;harmonic;interharmonic;fast Fourier transform-wavelet transform;fast Fourier transform-back propagation

0 引言

    隨著現代光伏系統的發展,越來越多的光伏逆變器接入電網,隨之產生的大量的諧波對于系統電能質量的污染十分嚴重[1]。FFT是傳統的諧波檢測算法,被廣泛應用于光伏發電站的諧波檢測[2]。但在工程應用中,采樣非同步時,FFT存在較為明顯的頻譜泄露與柵欄效應[3],檢測精度較低,難以準確識別間諧波與非穩態諧波[4]。為此許多學者們提出了各類改進FFT算法,如FFT與WT聯合算法[5-7]、FFT與BP聯合算法[8-10]等。但是,這些改進算法都只是針對某些諧波的檢測有優勢,難以處理實際的復雜諧波信號。本文提出了一種基于DFFT-WT-BP的諧波檢測方法,該方法結合了FFT、WT和BP網絡的優點,可以分析實際光伏并網逆變系統的復雜諧波信號,精度更高,實用性更強。

1 FFT算法

    傅里葉變換的實質就是對信號進行加窗截斷,從時域變換到頻域進行分析[11]??紤]到漢寧窗頻具有譜泄露較小的優點,因此截斷窗函數選擇漢寧窗。漢寧窗雙譜線插值算法的頻率、幅度的修正公式為[12]

ck2-gs1.gif

2 基于FFT的改進算法

2.1 基于FFT-WT的改進算法

    分布式光伏并網逆變系統實際運行時會產生大量的突變信號或高頻諧振,以及各種類型的噪聲干擾。這些信號FFT難以處理,而WT適用于分析非穩態信號,彌補了前者的不足[13]。所以,學者們提出了一種將FFT與WT結合之后得到的能夠綜合兩者優勢的新算法(FFT-WT算法),具體流程如圖1所示。主要思路為:利用WT將信號分解至不同的頻帶,利用FFT分析低頻信號,利用小波分析高頻信號。

ck2-t1.gif

    然而,該算法是在已知諧波成分的基礎上制定的,但在工程實際中面對的諧波信號是未知的,因此無法確定小波的分解層數以及所需要關注的頻帶。本文在前者的基礎上,增加了FTT預分析的方法,提出了雙重FFT與WT相結合(Wavelet-Double FFT,DFFT-WT)的改進方案:利用FFT獲取諧波的粗略分布,以此推算出小波的分解層數和后續關注的頻帶,再使用WT將信號分離。對所關注的高頻頻帶使用小波閾值消噪后分析與重構,獲得高頻分量的參數信息;對關注的低頻頻帶使用加窗插值FFT分析,獲得低頻分量的參數信息。算法的主要流程如圖2所示。

ck2-t2.gif

    對比圖1與圖2所示流程圖,可以看到,本節提出的DFFT-WT算法采取了預分析的方式,確定了分解層數與關注頻帶,理論上可以大大減少運算量,具有更高的精度與實用性。

2.2 基于FFT-BP的改進算法

    FFT對于諧波的檢測精度不高,而BP神經網絡擁有強大的非線性映射能力和自學習能力,能夠彌補前者的不足。對此,一些學者將FFT與BP神經網絡相結合(以下簡稱FFT-BP算法),提升了對于諧波檢測的精度,具體流程如圖3所示。

ck2-t3.gif

    本節將學習率、動量因子和激勵函數一同參與網絡的調節,構建的BP神經網絡結構圖如圖4所示,其訓練步驟如下:

ck2-t4.gif

    BP網絡的輸入設為ti(i=1,2,…,N),網絡的激勵函數c(t)表示為:

ck2-gs2-5.gif

    在仿真研究時發現,因為BP網絡尋求的是全局的最優解,所以在多種諧波共同構成的復雜諧波信號中,BP網絡為了達到整體誤差的最小,會在迭代時自動“犧牲”小信號分量的精度。所以說,改進后的FFT-BP算法對于復雜信號中的間諧波弱分量的檢測能力仍然是不夠的。

3 基于DFFT-WT-BP的聯合檢測方案

    DFFT-WT算法能夠同時處理穩態與非穩態諧波,但精度仍然有提升的空間,改進后的FFT-BP算法對于間諧波小信號的檢測能力不足,且無法檢測非穩態諧波。在研究了FFT算法、WT算法和BP神經網絡的基礎上,聯系前面提出的兩種改進算法,本文提出了基于DFFT-WT-BP的復雜信號檢測算法,具體流程如圖5所示,主要步驟如下:

ck2-t5.gif

    (1)FFT算法預分析,得到小波的分解層數以及需要關注的頻帶。

    (2)根據上一步計算獲得的分解層數,選取合適的離散小波將復雜信號粗略分離,得到關注頻帶信息。

    (3)對上一步分解之后得到的關注高頻分量進行閾值去噪后分析,必要時重構,得到高頻諧波的起止時刻以及振幅;得到關注的低頻分量,利用加窗插值FFT得到全部的穩態諧波個數及粗精度的頻率、幅度和相位。

    (4)將上一步得到的諧波總個數設定為BP網絡中神經元的個數,將得到的粗精度諧波頻率設定為BP神經網絡中諧波頻率的初始值。前文提到,BP網絡在運算復雜信號時,對于間諧波弱信號的檢測能力不足,但是本方案的前三步已經讓BP網絡獲得了較好的初值,因此在其基礎上,增加BP網絡迭代時±1%頻率閾值區間、±5%幅度閾值區間和±10%相位閾值區間,進行優化運算,最終得到穩態分量高精度的頻率、幅度與相位。

    與傳統的檢測算法以及各類改進檢測算法相比,DFFT-WT-BP算法主要作出了以下5點改進:

    (1)利用FFT預分析未知信號,可以快速得出分解層數和關注諧波所處的頻帶,只需要對特定的頻帶作處理,節省了工作量。

    (2)由于已經通過預分析的方法確定了關注頻帶,因此只需要對信號作粗略的分解,規避了分解層數過多時檢測速度與精度受到影響的問題。

    (3)將已經處理過的粗精度諧波參數送入BP網絡進一步優化,減少了迭代時間,提升了檢測精度,增加了對間諧波的識別能力。

    (4)將BP網絡的學習率與動量因子一起參與神經網絡的調整,減少了運算時間,提升了檢測精度,實現了對間諧波的檢測。

    (5)增加了頻率、幅度和相位的迭代區間,限制了運算時的搜索區域,規避了間諧波迭代時為了“迎合”全局的誤差最小值而發生偏移。

4 仿真分析

4.1 與FFT-BP算法的對比

    由2.2節分析可知,FFT-BP算法不好處理復雜信號中的間諧波,為了體現DFFT-WT-BP算法的優勢,在信號模型中僅加入整數次穩態諧波分量,獲得FFT-BP算法與DFFT-WT-BP算法對于整數次諧波的檢測結果。設諧波采樣信號為:

     ck2-gs6.gif

    由FFT預處理后,設定神經元個數為5個,取基波頻率為50 Hz,設定BP網絡初始的頻率學習率為0.02,幅度與相位的學習率為0.1,動量因子設定為0.6,并按2.2節所述的規則進行調整。獲得的幅度和相位的對比見表1、表2,誤差曲線的對比如圖6、圖7所示。可以看出,FFT-BP算法與DFFT-WT-BP算法在該類信號條件下,幅值與相位的檢測誤差均在10-5~10-4,精度并沒有明顯差異,但FFT-BP算法的運算次數為1 871次,DFFT-WT-BP算法的運算次數為672次,運算時間有很大的差距??梢缘贸?,DFFT-WT-BP算法與FFT-BP算法相比,迭代次數更少,效率更高。

ck2-b1.gif

ck2-b2.gif

ck2-t6.gif

ck2-t7.gif

4.2 與FFT-WT算法的對比

    本文構建了如式(7)所示的復雜信號,其包括50 Hz的基頻信號以及頻次比為1.6:3:3.1:5:5.2:7:8.2:11的穩態信號,其幅度比為100:8:50:10:50:5:50:30:15:30;含有一個最大幅度為80 V的高頻衰減信號;包含一個正態分布的隨機噪聲。對該模型采取FFT-WT算法以及DFFT-WT-BP算法分別仿真分析。

     ck2-gs7.gif

    根據圖6所示流程圖,得到高頻衰減信號如圖8所示,其最大幅度為80 V,起始位置為0.2 s,與預定結果一致,滿足檢測要求。得到全部的穩態諧波與間諧波粗精度的頻率、幅度與相位信息如圖9所示,經過BP網絡計算后獲得的優化結果與FFT-WT算法的結果分析結果比對見表3~表5。

ck2-t8.gif

ck2-t9.gif

ck2-b3.gif

ck2-b4.gif

ck2-b5.gif

    由表3~表5的數據對比得到:

    (1)FFT-WT算法檢測頻率的誤差分布在10-4~10-3,DFFT-WT-BP算法檢測頻率的誤差分布在10-6~10-5。

    (2)FFT-WT算法檢測幅度的誤差分布在10-4~10-2,DFFT-WT-BP算法檢測幅度的誤差分布在10-5~10-4

    (3)FFT-WT算法檢測相位的誤差分布在10-4~10-2,DFFT-WT-BP算法檢測相位的誤差分布在10-5~10-4

    能夠推出,在處理電網實際的復雜信號時,DFFT-WT-BP算法不但準確檢測出了非穩態分量的主要參數,而且用設定閾值區間的方法規避了FFT-BP算法的固有缺陷,擁有了對間諧波弱信號的檢測能力,對于穩態分量整體的檢測精度比FFT-WT算法高出了1~2個數量級。

5 結論

    針對光伏系統的諧波信號,本文在對現有的FFT-WT算法和FFT-BP算法改進的基礎上,提出了聯合的DFFT-WT-BP算法。經仿真驗證,本文提出的DFFT-WT-BP算法對于光伏系統中由穩態的諧波與間諧波分量、非穩態分量和各種噪聲疊加而成的復雜信號有著很好的檢測效果。理論與仿真結果表明,DFFT-WT-BP算法精度高,實時性好,適應能力強,能夠滿足實際的檢測需求。

參考文獻

[1] 薛萍,朱琳琳,王宏民.基于準同步采樣光伏發電系統諧波分析方法[J].電子技術應用,2015,41(11):121-123.

[2] LIU D,YANG Z,HE Y,et al.Harmonic analysis of power system based on Rife-Vincent self-convolution window triple-spectral-line interpolation FFT[J].Journal of Electronic Measurement & Instrumentation,2016,30(9):1351-1356.

[3] 李平,李源,孔銀昌.一種加Nuttall窗三譜線插值FFT諧波檢測算法[J].電子技術應用,2017,43(5):41-43.

[4] 翟曉軍,周波.一種改進的插值FFT諧波分析算法[J].中國電機工程學報,2016,36(11):2952-2958.

[5] 朱翔,解大,高強,等.基于FFT和db20小波變換的電力系統諧波聯合分析策略[J].電力系統保護與控制,2012,40(12):62-65.

[6] 房國志,楊超,趙洪.基于FFT和小波包變換的電力系統諧波檢測方法[J].電力系統保護與控制,2012,40(5):75-79.

[7] EBRAHIM M A,ELYAN T,WADIE F,et al.Optimal design of RC snubber circuit for mitigating transient overvoltage on VCB via hybrid FFT/Wavelet Genetic approach[J].Electric Power Systems Researc,2017,143:451-461.

[8] 王凱亮,曾江,王克英.一種基于BP神經網絡的諧波檢測方案[J].電力系統保護與控制,2013(17):44-48.

[9] 曹英麗,尹希哲.基于BP神經網絡和全相位快速傅里葉變換的電力系統諧波檢測技術研究[J].現代電子技術,2017, 40(1):133-136,141.

[10] 邢曉敏,商國敬,徐新.基于線性神經網絡的諧波檢測方法研究[J].電測與儀表,2014,51(22): 40-43.

[11] OUYANG M X. Applications of addbBlackman window function in FFT[J].Southern Metals,2012(5):51-53,60.

[12] KANG W,LI N,ZHANG J,et al.An improved harmonic analysis algorithm of multi-spectrum-line interpolation FFT[J].Electrical Measurement & Instrumentation,2016,53(10):8-15.

[13] 孫曙光,龐毅,王景芹,等.一種基于新型小波閾值去噪預處理的eemd諧波檢測方法[J].電力系統保護與控制,2016:44(2):42-48.



作者信息:

孫  成1,黃  鈺2,朱劍平1,張保健1,張志遠1,王雅靜2

(1.上海金智晟東電力科技有限公司,江蘇 南京210000;2.山東理工大學,山東 淄博255000)

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲人成网站在线播| 亚洲丁香婷深爱综合| 亚洲欧美另类国产| 亚洲激情国产| 午夜精品av| 日韩一区二区精品| 一区二区三区在线高清| 国产精品视频导航| 欧美日韩精品免费看| 久久久久久久久久看片| 亚洲乱码日产精品bd| 午夜国产精品影院在线观看| 国内精品美女在线观看| 国产精品视频区| 欧美日韩国产成人在线91| 久久综合色8888| 欧美在线二区| 亚洲欧美中日韩| 一区二区三区导航| 亚洲巨乳在线| 亚洲国内欧美| 欧美在线三区| 亚洲欧美视频在线观看| 一本大道久久精品懂色aⅴ| 亚洲日本欧美日韩高观看| 国产在线精品一区二区夜色| 女人香蕉久久**毛片精品| 性欧美video另类hd性玩具| aa级大片欧美三级| 91久久久在线| 亚洲国产精品一区二区三区| 亚洲综合欧美| 亚洲无线视频| 9色国产精品| 亚洲福利专区| 亚洲国产精品成人| 国内精品一区二区三区| 国产欧美日本一区二区三区| 欧美日韩一区在线播放| 欧美日本中文字幕| 欧美裸体一区二区三区| 欧美人妖另类| 欧美日韩天天操| 欧美日韩天堂| 国产精品第13页| 国产精品九九久久久久久久| 欧美天天在线| 欧美日韩一区精品| 欧美午夜精品理论片a级大开眼界| 欧美猛交免费看| 欧美日本一区二区视频在线观看 | 国产精品99久久久久久久久久久久| 国产区欧美区日韩区| 国产丝袜一区二区三区| 国产亚洲欧洲一区高清在线观看| 国产一区二区精品丝袜| 黄色另类av| 亚洲国产三级| 在线一区二区视频| 亚洲欧美激情视频| 亚洲欧美综合国产精品一区| 亚洲美女黄网| 一区二区三区国产在线观看| 亚洲天堂av综合网| 亚洲国产二区| 99视频热这里只有精品免费| 亚洲一区二区三区四区视频| 一区二区三区四区五区视频 | 亚洲国产精品嫩草影院| 亚洲人成在线播放| 一区二区欧美日韩| 亚洲欧美久久久久一区二区三区| 欧美制服丝袜第一页| 久久亚洲色图| 欧美激情一区二区久久久| 欧美日韩网址| 国产农村妇女毛片精品久久莱园子| 国产亚洲欧美中文| 亚洲激情成人网| 亚洲图片欧美一区| 久久激情五月丁香伊人| 99re热精品| 性色一区二区| 欧美.www| 欧美日韩国产大片| 国产日韩欧美三级| 亚洲激情网站| 亚洲欧美日韩国产综合| 亚洲激情校园春色| 亚洲综合视频一区| 久久亚洲精品欧美| 欧美私人啪啪vps| 国内精品久久久久国产盗摄免费观看完整版 | 久久久久综合网| 亚洲精品日韩综合观看成人91 | 日韩视频精品在线| 欧美一级淫片aaaaaaa视频| 久久久精品午夜少妇| 国产精品人人做人人爽| 亚洲国产日韩欧美| 西西裸体人体做爰大胆久久久| 91久久精品国产91久久性色tv| 亚洲一区二区三区色| 老鸭窝亚洲一区二区三区| 欧美性色aⅴ视频一区日韩精品| 国内精品视频在线播放| 夜夜精品视频| 亚洲区一区二| 久久国产精品久久久久久久久久| 欧美激情亚洲自拍| 国产专区综合网| 亚洲一区二区精品| 亚洲伦理精品| 久久久久久亚洲精品不卡4k岛国| 欧美色大人视频| 欧美午夜在线| 欧美午夜精品久久久久久孕妇| 在线看片一区| 久久xxxx| 欧美亚洲一区二区在线观看| 欧美理论大片| 精品成人在线观看| 亚洲欧美激情视频| 欧美在线播放一区二区| 国产精品va| 亚洲毛片av在线| 亚洲三级免费电影| 久久青草久久| 国产视频一区在线观看一区免费| 99国内精品久久| 亚洲精品一区二区在线| 久久免费视频网| 国产日韩欧美在线看| 亚洲夜间福利| 一区二区激情小说| 欧美激情久久久久| 在线播放不卡| 久久精品首页| 久久国产手机看片| 国产精品久久久久久妇女6080| 国内成+人亚洲| 欧美一级一区| 欧美一区三区二区在线观看| 国产女优一区| 亚洲直播在线一区| 亚洲自拍高清| 国产精品高潮呻吟视频| 99热这里只有精品8| 日韩视频在线一区| 欧美 亚欧 日韩视频在线| 亚洲第一福利视频| 亚洲美女尤物影院| 欧美精品一区二区久久婷婷| 亚洲国产精品一区二区第一页 | 99国产精品国产精品毛片| 欧美国产日韩在线观看| 亚洲日本中文字幕区| 亚洲国产一二三| 美女黄毛**国产精品啪啪| 激情亚洲一区二区三区四区| 久久成人一区| 麻豆精品在线视频| 在线观看亚洲视频| 亚洲精品影院| 欧美日韩成人在线观看| aⅴ色国产欧美| 午夜精品美女久久久久av福利| 国产精品三上| 欧美一区二区高清| 久久一区二区三区四区五区| 亚洲电影毛片| 99国产精品| 国产精品久久毛片a| 亚洲欧美日韩精品久久久久| 欧美在线视频网站| 一区视频在线| 99天天综合性| 欧美香蕉视频| 亚洲欧美日韩在线观看a三区 | 久久成人人人人精品欧| 国内久久婷婷综合| 亚洲精品视频在线看| 欧美日韩三级电影在线| 亚洲一区二区在线播放| 久久久久在线| 亚洲人在线视频| 性一交一乱一区二区洋洋av| 亚洲国产日韩欧美在线动漫| 亚洲一二三区视频在线观看| 国产精品免费网站在线观看| 欧美在线视频在线播放完整版免费观看 | 99v久久综合狠狠综合久久| 欧美在线二区| 91久久国产综合久久| 午夜精品视频网站| 在线精品视频一区二区| 一区二区三区色| 国产一区香蕉久久| 亚洲作爱视频| 国产午夜精品视频免费不卡69堂|