《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于卷積神經網絡的紅外監測系統設計
基于卷積神經網絡的紅外監測系統設計
2023年電子技術應用第4期
焦翔1,趙文策2,蒯亮1,周淦1,白永強2,任彥程2
(1.中國電子信息產業集團有限公司第六研究所,北京 102209;2.太原衛星發射中心,山西 太原 030027)
摘要: 為了部隊后勤物資有效、方便、統一管理,研究設計了一種用于監測物品在位狀態的告警監測系統。該系統利用樹莓派主板采集紅外傳感器檢測物品在位狀態的電平信號以及攝像頭拍攝物品的圖像數據,并將其轉化為通用數據幀,通過指定源組播的方式發送至數據處理模塊,最后使用基于卷積神經網絡的圖像識別算法判斷物品的正確性,并在監測模塊界面上實時顯示其狀態。經驗證,該系統可以保證數據采集的實時性以及識別物品的準確性,實用性強。
中圖分類號:TN215;P315.69
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.222979
中文引用格式: 焦翔,趙文策,蒯亮,等. 基于卷積神經網絡的紅外監測系統設計[J]. 電子技術應用,2023,49(4):83-87.
英文引用格式: Jiao Xiang,Zhao Wence,Kuai Liang,et al. Design of infrared monitoring system based on convolutional neural network[J]. Application of Electronic Technique,2023,49(4):83-87.
Design of infrared monitoring system based on convolutional neural network
Jiao Xiang1,Zhao Wence2,Kuai Liang1,Zhou Gan1,Bai Yongqiang2,Ren Yancheng2
(1.The Sixth Research Institute of China Electronics Corporation, Beijing 102209, China; 2.Taiyuan Satellite Launch Center, Taiyuan 030027, China)
Abstract: For the effective, convenient and unified management of materials about military logistics, this paper studies and designs a monitoring system for monitoring the presence of items. The system uses the motherboard of Raspberry Pi to collect the level signal of the infrared sensor about the presence of the items and the images taken by camera of the items. Then it converts the data into the general data frame, and sends the frame to the data processing module through the source-specific multicast. Finally, the image recognition based on the convolutional neural network is used to judge the correctness of the item, and display its status in real time through the monitoring interface. It has been verified that the system can ensure the real time of data acquisition and the accuracy of identifying items. It has strong practicability.
Key words : Raspberry Pi;infrared detection;condition monitoring;image recognition;convolutional neural network

0 引言

隨著信息技術的不斷發展,智能化的概念開始逐漸滲透到各行各業以及我們生活中的方方面面。其中,在部隊后勤方面,智能化的物資管理能夠有效地提高后勤保障工作,減小管理人員的管理成本,因此建設一套能實現實時化、智能化、可視化的監測系統具有重要的理論意義和實際應用價值。鑒于此,本文以部隊后勤物資管理為背景,提出了一種基于卷積神經網絡的紅外監測系統,實時監測物品狀態。該系統以樹莓派作為主控制系統集成了多種元器件,并將采集的數據進行數據處理,最后將結果可視化,同時具有查詢、預警等功能。該軟件系統運行在國產銀河麒麟操作系統、國產飛騰芯片處理器上,滿足了核心領域高信息安全、高自主可信的服務需求。由于YOLOv5網絡模型檢測精度較高、速度快,因此該系統采用它進行目標檢測。



本文詳細內容請下載:http://m.jysgc.com/resource/share/2000005288




作者信息:

焦翔1,趙文策2,蒯亮1,周淦1,白永強2,任彥程2

(1.中國電子信息產業集團有限公司第六研究所,北京 102209;2.太原衛星發射中心,山西 太原 030027)



微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲成av人片在线观看无码| 成人看片黄a在线观看| 从镜子里看我怎么c你| 翁虹三级伦理电影大全在线观看| 国产成人综合欧美精品久久| 3571色影院| 无限在线观看下载免费视频| 亚洲精品视频专区| 精品国产v无码大片在线看| 国产精品久久久久久久| 91麻豆国产免费观看| 奇米四色77777| 久久精品电影免费动漫| 欧美性v视频播放| 亚洲精品中文字幕麻豆| 色戒7分27秒大尺度在线| 国产男女爽爽爽免费视频| 26uuu另类亚洲欧美日本| 在线中文字幕网| a级成人毛片久久| 废柴视频网最新fcww78| 中文字幕一区二区三区乱码| 日批视频在线免费观看| 久久午夜福利电影| 日韩中文字幕免费观看| 五月天婷五月天综合网站| 欧美一区二区三区综合色视频| 亚洲小说图片视频| 欧美激情一区二区三区免费观看| 亚洲精品欧美精品日韩精品| 狠狠色狠狠色综合伊人| 国产内射在线激情一区| 97国产在线播放| 国产成人精品久久免费动漫| 欧美大黑bbb| 国产欧美日韩综合精品一区二区| 老司机精品视频在线| 国产精品久久久久久久| 俄罗斯精品bbw| 国产男女爽爽爽爽爽免费视频| 亚洲综合精品香蕉久久网|