《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 結合不確定性估計的輕量級人體關鍵點檢測算法
結合不確定性估計的輕量級人體關鍵點檢測算法
電子技術應用
王亞東,秦會斌
(杭州電子科技大學 新型電子器件與應用研究所,浙江 杭州 310018)
摘要: 人體關鍵點檢測在智能視頻監控、人機交互等領域有重要應用。針對基于熱圖的人體關鍵點檢測算法依賴高分辨率熱圖、計算資源消耗大的問題,提出一種結合不確定性估計的輕量級算法。使用低分辨率熱圖,結合不確定性估計預測誤差分布的尺度參數,提高了預測結果的可信度;利用尺度參數監督和約束熱圖,緩解梯度消失,增強了網絡的魯棒性。COCO數據集上實驗結果表明,與積分姿態回歸算法相比,改進后算法的平均精度提高了3.3%,降低了資源占用。
中圖分類號:TP391 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233938
中文引用格式: 王亞東,秦會斌. 結合不確定性估計的輕量級人體關鍵點檢測算法[J]. 電子技術應用,2023,49(10):40-45.
英文引用格式: Wang Yadong,Qin Huibin. Lightweight human key point detection algorithm with uncertainty[J]. Application of Electronic Technique,2023,49(10):40-45.
Lightweight human key point detection algorithm with uncertainty
Wang Yadong,Qin Huibin
(Institute of New Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310018, China)
Abstract: Human key point detection has important applications in intelligent video surveillance, human-computer interaction and other fields. Aiming at the problem that the human key point detection algorithm based on heatmap depends on high-resolution heatmap and consumes large computational resources, a lightweight algorithm combined with uncertainty estimation is proposed. The reliability of prediction results is improved by using low resolution heatmap and combining uncertainty to estimate the scale parameters of prediction error distribution. The scale parameter is used to monitor and constrain the heatmap to alleviate the gradient disappearance and enhance the robustness of the network. The experiments on COCO dataset show that the average accuracy of the improved algorithm is improved by 3.3% and the resource occupation is reduced compared with integral pose regression.
Key words : human key point detection;uncertainty estimation;lightweight;integral pose regression(IPR)

0 引言

隨著社會發展,監控視頻分析正從人工走向智能,從傳統走向現代。人體關鍵點檢測是以人為中心的視頻分析中的重要環節,又稱為人體姿態估計[1]。人體關鍵點是具有明確語義的關節點和部位,是行為識別[2]、人機交互[3]和動作捕捉[4]等應用的重要基礎。

隨著卷積神經網絡(Convolutional Neural Network,CNN)的發展,人體關鍵點檢測取得顯著進步,精度逐漸提升。基于深度卷積神經網絡的人體關鍵點檢測算法分為兩類:基于熱圖表示的檢測方法和基于坐標表示的回歸方法。

自從Tompson等人[5]首次提出用熱圖表示關節點,檢測方法成為二維姿態估計的主流。孫科等人[6]針對關鍵點檢測任務提出HRNet,整個網絡中保持高分辨率的特征圖,通過并行連接多個不同分辨率的子網絡,并在它們之間進行信息交互和融合,避免了信息的丟失和模糊。檢測方法具有精度高、訓練效率高和空間泛化性好等優點。但是熱圖分辨率低于原圖分辨率導致的量化誤差和解碼過程中argmax操作不可微分,使得檢測方法依賴高分辨率熱圖,限制了在嵌入式設備中的使用。

回歸方法在人體姿態估計中研究較早,但相關工作較少。回歸方法直接端到端產生圖像中關鍵點的坐標。Toshev等人[7]首次提出利用CNN回歸坐標進行人體姿態估計。Carreira等人[8]提出了一個迭代誤差反饋框架(Iterative Error Feedback,IEF),引入自上而下的反饋,預測當前估算值的偏移量并進行迭代矯正。Nie等人[9]提出了單階段的多人姿態估計網絡(Single-stage Multi-person Pose Machine,SPM),采用根節點預測人體位置,然后預測關節點的偏移量。回歸方法擁有簡單靈活高效等優點,但性能仍遜色于檢測方法,尤其在遮擋、截斷和運動模糊等場景中誤差較大。


本文詳細內容請下載:http://m.jysgc.com/resource/share/2000005711




作者信息:

王亞東,秦會斌

(杭州電子科技大學 新型電子器件與應用研究所,浙江 杭州 310018)


微信圖片_20210517164139.jpg


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 天天天天天天干| 日韩精品欧美激情亚洲综合| 午夜成人免费视频| 黄毛片一级毛片| 国产精品欧美激情在线播放| 99精品国产综合久久久久五月天| 成人毛片免费观看视频| 久久久久成人精品免费播放动漫| 最近免费韩国电影hd免费观看| 亚洲日本欧美日韩精品| 激情按摩系列片AAAA| 免费夜色污私人影院在线观看| 美女扒开尿口让男人捅| 国产乱子影视频上线免费观看| 黄页网址大全免费观看35| 日日夜夜精品免费视频| 国产激情电影综合在线看| 99久久国产热无码精品免费| 女人18毛片a级毛片免费视频| 丝瓜草莓www在线观看| 插我舔内射18免费视频| 久久人妻av一区二区软件| 日韩精品无码免费专区午夜不卡| 亚洲va无码va在线va天堂| 欧美成人综合在线| 亚洲第九十九页| 爱豆传媒在线视频观看网站入口| 偷炮少妇宾馆半推半就激情| 精品一久久香蕉国产二月 | 一本加勒比HEZYO无码人妻| 成人毛片18女人毛片免费| 中文字幕网在线| 无限资源日产好片| 久久久精品久久久久特色影视| 日韩人妻无码精品专区| 久久精品夜色国产亚洲av| 日韩精品极品视频在线观看免费| 五月天婷婷精品免费视频| 桃子视频在线官网观看免费 | 99久久精品免费看国产一区二区三区 | 久久精品国产99精品最新|