《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 一種改進的基于Mask R-CNN的玉米大斑病實例分割算法
一種改進的基于Mask R-CNN的玉米大斑病實例分割算法
電子技術應用
朱宇浩1,童孟軍1,2
1.浙江農林大學 數學與計算機科學學院; 2.浙江省林業智能監測與信息技術研究重點實驗室
摘要: 玉米作為我國主糧作物,其生產常受大斑病、小斑病、銹病等病害及蟲害影響,導致其產量與品質下降,威脅農業生產安全。近年來,視覺檢測技術因其高準確性已成為病害防控的重要工具。以Mask R-CNN為基礎框架,通過融入DyHead、Groie和OHEM模塊進行優化,旨在提升對細微病灶圖像的分割效能。改良后的模型在病害圖像分割任務上展現出卓越性能,平均精度(mAP)提升4%,尤其在小目標分割上準確率提高8.5%,相較于YOLOv5、YOLACT++等同類模型優勢顯著。通過消融實驗驗證了各新增模塊的有效性,證實該模型為精準檢測玉米大斑病提供了有力的技術支持與理論依據。
中圖分類號:TP391 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244871
中文引用格式: 朱宇浩,童孟軍. 一種改進的基于Mask R-CNN的玉米大斑病實例分割算法[J]. 電子技術應用,2024,50(5):71-76.
英文引用格式: Zhu Yuhao,Tong Mengjun. An improved Mask R-CNN based instance segmentation algorithm for maize Northern Leaf Blight[J]. Application of Electronic Technique,2024,50(5):71-76.
An improved Mask R-CNN based instance segmentation algorithm for maize Northern Leaf Blight
Zhu Yuhao1,Tong Mengjun1,2
1.College of Mathematics and Computer Science, Zhejiang A&F University;2.Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research
Abstract: Maize, a crucial staple crop in China, is frequently beset by production challenges stemming from diseases such as maize Northern Leaf Blight, Southern Corn Leaf Blight, and rust, along with insect pests. These maladies significantly undermine maize yield and quality, presenting a potential menace to agricultural production stability. In recent times, visual disease detection techniques have emerged as pivotal instruments for disease management, offering heightened precision relative to conventional methods. This paper leverages the Mask R-CNN architecture as its foundation, integrating DyHead, Groie, and OHEM modules to augment the model's proficiency in segmenting images containing minute disease manifestations. The enhanced Mask R-CNN model exhibits outstanding performance in disease image segmentation, witnessing a 4% uplift in mean average precision (mAP) and an 8.5% enhancement in accuracy for small object segmentation. Compared to analogous instance segmentation models like YOLOv5 and YOLACT++, this model displays superior prowess. To substantiate the utility of each incorporated module, ablation studies were carried out, revealing their constructive roles. Thus, this methodology furnishes a sturdy theoretical underpinning and technological means for the efficacious and precise detection of maize Northern Leaf Blight.
Key words : instance segmentation;Northern Leaf Blight;Mask R-CNN;computer vision;attention mechanism

引言

玉米是中國最重要的糧食作物之一,廣泛種植于東北、華北、淮河流域和長江流域[1]。然而,玉米生產經常受到各種疾病和害蟲的威脅,其中玉米大斑病[2]是其中一個重要挑戰。玉米大斑病嚴重影響了玉米的產量和質量。特別值得注意的是由于病原體突變導致對許多常用殺菌劑產生不同程度的抗藥性[3],給預防和控制工作帶來了重大困難。準確高效的病害檢測技術對于科學預防和控制這些疾病至關重要。

玉米大斑病(Northern Leaf Blight, NLB)是一種嚴重的農作物病害,可以顯著降低玉米產量,是影響玉米作物經濟最為嚴重的疾病之一[4]。玉米大斑病的發生是由真菌侵入引起的,主要影響玉米植株的葉片。在早期階段,受影響的植株在葉片表面呈現水浸狀病斑。這些病斑逐漸向兩端擴展,最終演變成灰褐色或褐色斑點。在玉米大斑病的后期階段,這些斑點的形狀轉變為橢圓形或菱形圖案,長度為6 cm~9 cm,寬度約為1.5 cm[5]。由玉米大斑病引起的病區通常較大,可以通過攝像機拍攝的圖像清晰可見。與傳統的人工田間檢查相比,使用攝像機圖像是監測玉米大斑病的有效方法之一。

在現代農業中,基于植物葉片特征的檢測已成為自動植物病害檢測的研究熱點。傳統方法,如概率神經網絡、主成分分析、人工神經網絡和模糊邏輯已應用于植物葉片病害的分類。隨著計算機視覺技術的進步,由于其便利性和高準確性,深度學習越來越多地用于病害檢測。Seetharaman及其同事引入了一種改進的R-CNN模型,增強了香蕉葉病檢測的準確性[6]。


本文詳細內容請下載:

http://m.jysgc.com/resource/share/2000005991


作者信息:

朱宇浩1,童孟軍1,2

(1.浙江農林大學 數學與計算機科學學院,浙江 杭州 311300;

2.浙江省林業智能監測與信息技術研究重點實驗室,浙江 杭州 311300)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 十八禁视频网站在线观看| 在线私拍国产福利精品| 亚洲jjzzjjzz在线播放| 精品一区二区三区在线观看视频| 国产成人精品第一区二区| 99精品热这里只有精品| 我的极品岳坶34章| 久久精品国内一区二区三区| 欧美精品stoya在线| 免费的一级片网站| 能在线观看的一区二区三区| 国产特级毛片aaaaaa高潮流水| 99久久精品费精品国产一区二区| 把腿抬起来就可以吃到扇贝了 | 好男人社区www影院在线观看| 久久久久久人妻无码| 最新国产小视频在线播放| 亚洲欧美另类视频| 男女拍拍拍免费视频网站| 啊灬啊灬啊灬快灬深用力| 香港台湾日本三级纶理在线视| 国产精品乱码在线观看| 97欧美精品激情在线观看最新| 好大好硬好爽免费视频| 中文字幕乱码一区二区免费 | 最新浮力影院地址第一页| 亚洲日本va在线观看| 男人和女人做爽爽视频| 嗯!啊!使劲用力在线观看| 香港台湾日本三级纶理在线视| 亚洲综合在线另类色区奇米| av天堂永久资源网| 影音先锋女人aa鲁色资源| 中文字幕日韩专区精品系列| 日本大片免a费观看视频| 久久天天躁日日躁狠狠躁| 日韩精品视频免费网址| 久草视频精品在线| 日韩精品中文字幕在线| 久久精品无码午夜福利理论片| 最新国产午夜精品视频成人|