《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 微型能源采集技術(shù)的關(guān)鍵應(yīng)用問題研究及解決方案
微型能源采集技術(shù)的關(guān)鍵應(yīng)用問題研究及解決方案
摘要: 實現(xiàn)微觀層面的能量采集以及最大程度的節(jié)能,為工程師提供了新的發(fā)展空間,同時也提出了許多嚴峻挑戰(zhàn)。戰(zhàn)勝這些挑戰(zhàn)將帶來諸多益處,包括可進一步開發(fā)“永續(xù)”電子設(shè)備、降低系統(tǒng)生命周期成本、減少產(chǎn)品的環(huán)境影響等。令人振奮的是,現(xiàn)在工具已準備就緒,可隨時啟動開發(fā)工作。
Abstract:
Key words :

  假如要為手持終端、便攜式設(shè)備以及距離插座數(shù)英里之遙的固定設(shè)備供電,是否還有比電池更好的解決方案呢?

  這一問題的答案始終取決于應(yīng)用技術(shù)的發(fā)展。但是,從環(huán)境中提取未利用能源的能源采集技術(shù),正日益成為各種應(yīng)用領(lǐng)域中有力的競爭方案。在過去幾年里,能源采集技術(shù)已走出實驗室,來到設(shè)計工程師的工作臺。在短期內(nèi),雖然能源采集技術(shù)還不會完全替代所有應(yīng)用領(lǐng)域的電池,但它已顯現(xiàn)出眾多優(yōu)勢,比如:傳感器可無需更換電池或維護持續(xù)數(shù)年運行、低能耗、綠色環(huán)保,以及能為最終用戶帶來長期的低成本效益。

  幾十年來,在世界能源構(gòu)成中,憑借風(fēng)能與太陽能發(fā)電廠進行的大規(guī)模能源采集雖然所占份額較小,但一直處于增長態(tài)勢。2007年,全球光伏市場規(guī)模約為12億美元,逆變器出貨數(shù)量不足50萬臺。現(xiàn)在,從振動、溫差、光及其他環(huán)境能源獲取毫瓦級電能的微型采集器也正在走向商業(yè)應(yīng)用。幾毫瓦雖然微不足道,但非常適用于德州儀器(TI)等IC公司所開發(fā)的超低功耗技術(shù)產(chǎn)品。圖1給出了大規(guī)模能源采集與微型能源采集之間的差異。

 

  圖 1:大規(guī)模與微型能源采集技術(shù)的比較。

  能源采集以多種方式開辟了工程領(lǐng)域的新前景。此外,能源采集還要求工程師從能源角度出發(fā)修正自己的思維,特別是在能量管理設(shè)計的策略方面。雖然我們尚不能認為能源采集技術(shù)改寫了電路設(shè)計中實現(xiàn)最佳能源效率的規(guī)則,但對眾多工程師而言,很多最佳的實踐操作都與直覺相反。

  應(yīng)用基本因素:市場

  廣義上講,采集的能源包括各種能源,比如動能(風(fēng)、波、重力、振動等)、電磁能(光伏、電磁波等)、熱能(太陽熱能、地?zé)帷囟茸兓⑷紵?、原子能(原子核能、放射性衰變等)或生物能(生物燃料、生物質(zhì)能等)。

  由于能源采集技術(shù)廣泛而多樣化,因而很少會有人試圖估計整個市場的規(guī)模有多大,而且還有很多應(yīng)用沒有被發(fā)現(xiàn)。目前,人們對微型能源采集技術(shù)市場的考察一般傾向于該技術(shù)明確可替代電池的細分市場。

  根據(jù)市場調(diào)研公司Darnell Group的統(tǒng)計數(shù)據(jù),到2012年將有2億個能源采集器與薄膜電池投入使用。汽車、家庭、工業(yè)、醫(yī)療、軍事以及航天等領(lǐng)域的能源采集應(yīng)用市場將從2008年的1,350萬套增長到2013年的1.641億套。

  要求遠程節(jié)點自動運行數(shù)年的無線傳感器網(wǎng)絡(luò)成為首要的目標應(yīng)用。根據(jù)其位置的不同,這些傳感器節(jié)點可從光、振動或其他來源采集能量。比如,鐘表、計算器以及藍牙耳機等都是光伏電池應(yīng)用的潛在領(lǐng)域。此外,精工公司的Kinetic牌手表采用了將運動能轉(zhuǎn)換為電能的技術(shù);Freeplay公司的EyeMax寬頻無線電廣播產(chǎn)品采用振動能為無線電系統(tǒng)供電。

  從體熱采集能量是最具吸引力的技術(shù)之一,精工公司的Thermic牌手表就是采用這種方案。可統(tǒng)計從簡單的脈搏頻率到ECG波等關(guān)鍵數(shù)據(jù)的新一代生物計量傳感器,甚至有可能以體熱作為能源。

  轉(zhuǎn)換技術(shù)只是整個系統(tǒng)的一部分。典型的能源采集系統(tǒng)包括眾多組件,比如薄膜電池中的暫存器、大量復(fù)雜的能源管理電路、模擬轉(zhuǎn)換器以及超低功耗微處理器(MCU)。一個非常重要的設(shè)計目標是將電源電路與應(yīng)用電路相匹配,以實現(xiàn)最佳總體性能。只要設(shè)計人員確信采集技術(shù)將支持這種產(chǎn)品,就能開發(fā)出相關(guān)應(yīng)用。

  應(yīng)用基本因素:能源的獲得

  研究的初始階段,必須估算能量的可獲得性。圖2給出了四種環(huán)境下微型能源采集可提供的每單元能量的大約數(shù)據(jù)。

 

  圖2:四種環(huán)境下的 能源采集估算。

  下一步將*估可行系統(tǒng) (viable system) 所能采集的能量。

  由于采用大型太陽能電池板,太陽能光伏收集是一種高效率的收集技術(shù)。每100平方毫米光伏電池平均可產(chǎn)生大約1mW的電能。一般能源效率約為10%,容量比(平均產(chǎn)生的電能對太陽持續(xù)照射時將產(chǎn)生電能的比率)約為15%~20%。

  市場上出售的動能收集系統(tǒng)可產(chǎn)生毫瓦級的電能。能量很有可能通過一個振蕩體(振動)而產(chǎn)生,但由壓電電池或彈性體收集的靜電能也屬于動能范圍。橋梁等建筑物以及眾多工業(yè)與汽車結(jié)構(gòu)可產(chǎn)生振動能。基本動能收集技術(shù)包括:(1)一個彈簧上的物體;(2)將線性運動轉(zhuǎn)換為旋轉(zhuǎn)運動的設(shè)備;(3)壓電電池。第(1)與第(2)項技術(shù)的優(yōu)勢是,電壓不取決于電源本身,而取決于轉(zhuǎn)換設(shè)計。靜電轉(zhuǎn)換可產(chǎn)生高達 1,000V或更高的電壓。

  熱電收集技術(shù)利用了賽貝克(Seebeck)效應(yīng),即在兩個金屬或半導(dǎo)體之間存在溫差的情況下而產(chǎn)生電壓。熱電發(fā)電機(TEG)由熱并聯(lián)與電串聯(lián)的熱電堆構(gòu)成。最新型TEG在匹配負載下可產(chǎn)生0.7V輸出電壓,工程師在設(shè)計超低功耗應(yīng)用時通常采用該電壓。所產(chǎn)生的電能取決于TEG的大小、環(huán)境溫度以及(當從人體收集熱能時的)新陳代謝活動水平。

  根據(jù)比利時研究機構(gòu)IMEC公司的研究,在22℃時,手表型TEG在正常活動中可產(chǎn)生平均0.2~0.3mW的有用電能。一般情況下,一個TEG可持續(xù)為一個電池或超級電容器充電,但需要高級電源管理來優(yōu)化性能。

  上述三種主流微能量采集來源都有幾個共同之處。他們都通常產(chǎn)生不穩(wěn)定電壓,而并非目前電子電路仍廣泛使用的3.3V穩(wěn)定電壓。此外,這三種技術(shù)提供的都是間斷電源,甚至有時根本就不能提供電源。因此,設(shè)計工程師需要使用電源轉(zhuǎn)換器與混合能源系統(tǒng)來解決這些問題。

  電源管理

  電源管理才是真正值得探討的問題。重要的邊界條件是,目前所討論的大多數(shù)微型采集器能源技術(shù)所產(chǎn)生的輸入電壓均小于0.5V。這么小的輸出電壓很難啟動電源轉(zhuǎn)換器的電路。此外,二次損耗會對轉(zhuǎn)換效率產(chǎn)生影響。

  在大多數(shù)情況下(并非所有情況下),不可使用我們熟悉的線性穩(wěn)壓器拓撲結(jié)構(gòu),因為線性穩(wěn)壓器只能使電壓降低,而是更適合采用開關(guān)穩(wěn)壓器。通過切斷輸入信號,開關(guān)穩(wěn)壓器可以控制其幅度和頻率。此外,開關(guān)拓撲結(jié)構(gòu)只消耗很少的電能。但從另一方面講,開關(guān)穩(wěn)壓器會使信號頻譜發(fā)生改變,并導(dǎo)致頻率干擾。由于需要濾波器對輸出進行控制,采用這種方案會導(dǎo)致成本的上升。

  對工程設(shè)計人員來說,能量采集技術(shù)實現(xiàn)的設(shè)計環(huán)境與以往有很大不同。在傳統(tǒng)的電源管理應(yīng)用中,最節(jié)能的方法是采用高輸入電壓來啟動,以便在小電流和低電能消耗的條件下完成轉(zhuǎn)換。

  然而,能量采集應(yīng)用中輸入電壓一般比較低,因此設(shè)計工程師所面臨的環(huán)境恰恰相反。在輸入電壓較低的情況下,若目標輸出電源能確定,則要求電源管理電路在較大電流下運行。大電流導(dǎo)致電源轉(zhuǎn)換器的尺寸增大,從而更難提高系統(tǒng)效率。

  在輸入電壓不穩(wěn)定且較低的情況下,實現(xiàn)低成本和低能耗濾波的基本方法有幾種。當然,選擇哪種方法需要權(quán)衡利弊。比如,采用較大的開關(guān)可以減少電阻損耗,但更大的開關(guān)會要求更大的啟動電流,該開關(guān)可能無法提供。此外,通過降低開關(guān)頻率可以提高效率,但這要求采用較大的濾波器。

  設(shè)計人員應(yīng)記住的最重要一點是,對于僅能產(chǎn)生幾毫瓦功率的系統(tǒng)來說,管理電源所消耗的電能可能等于甚至大于系統(tǒng)所產(chǎn)生的電能。通常,像給MOSFET 柵極電容充電這樣簡單的任務(wù)就可能消耗大量的電能。

  在上述這些情況下,可以考慮使用電流源柵極充電,而不是電壓源柵極充電。使用電流源柵極充電的結(jié)果是,電路將變得更加復(fù)雜,但電能損耗和電路泄漏將得到更好的控制。

  另外,也可以考慮使用一個以上的電源轉(zhuǎn)換器。圖3所示的同步整流器電路雖不能提供穩(wěn)定的電源,但它是對向另一個效率更高的電源轉(zhuǎn)換器的定期發(fā)送高功率脈沖的電容,進行充電的良好解決方案。這個效率更高的轉(zhuǎn)換器負責(zé)處理應(yīng)用電路所需的信號調(diào)節(jié)。

 

  圖 3:同步整流器電路。

  在一些應(yīng)用中,另一種柵極電荷操作(即使用電壓源柵極電荷電路)可大大提高效率。這種方法可將電路中的幾個晶體管從小到大進行排列(如圖4所示)。

 

  圖4:晶體管寬度轉(zhuǎn)換帶來的效率優(yōu)勢。

  伊利諾伊斯大學(xué)厄巴納香檳分校設(shè)計的電路也可以自動檢測功耗,并同時可采用適當尺寸和數(shù)量的晶體管來保持高效率。較高值的晶體管可在高功率情況下使用,當系統(tǒng)以待機功率水平運行時,可采用較小的晶體管。圖4顯示了這種方案比不按晶體管尺寸進行優(yōu)化的方案更具有優(yōu)勢。

  在實施上述方案時應(yīng)記住,設(shè)計最高效的轉(zhuǎn)換器可產(chǎn)生最多能量的傳統(tǒng)功率轉(zhuǎn)換方式并不總是適用于微型能量采集。應(yīng)將對整個系統(tǒng)的能量輸出進行優(yōu)化作為追求的目標。有時,這意味著設(shè)計方案并不以系統(tǒng)各部分均達到最高效率為目標。

  對IC的判定選擇

  設(shè)計人員必須清楚其選擇 IC 技術(shù)的含義。至少在潛意識中,每個人都意識到高級技術(shù)節(jié)點能生產(chǎn)出更高效率的半導(dǎo)體器件。在常規(guī)電路設(shè)計中,常常會忽視這種差別,因為亞微米器件的成本優(yōu)勢被認為超過其效率所帶來的優(yōu)勢。微型能量采集應(yīng)用改變了這個規(guī)則。

  比如,對于早期能量采集應(yīng)用,伊利諾伊斯大學(xué)厄巴納香檳分校設(shè)計的小型電源轉(zhuǎn)換器通過采用1.5μm工藝和8μm電感器構(gòu)建的IC可實現(xiàn)53%的效率。在考慮如何改進轉(zhuǎn)換器時,對于采用不同工藝技術(shù)和電感器尺寸的各種組合可能達到的不同效率,設(shè)計小組進行了計算。

  圖5顯示了計算結(jié)果。根據(jù)計算,最先進的技術(shù)組合(采用銅互連技術(shù)的0.25μm工藝技術(shù)與25μm感應(yīng)器)可實現(xiàn)81%的效率。此外,圖5也顯示了在哪些地方可避免損耗。

 

  圖 5:采用高級 IC工藝技術(shù)可顯著提升效率。

  應(yīng)用的其他部分也需要采用高級工藝技術(shù)的IC,包括MCU。TI的超低功耗MSP430 MCU平臺就是一個很好的例子,該MCU在工作狀態(tài)的功耗僅為160uA/MHz,在待機狀態(tài)的功耗還不到500nA。此外,TI提供的器件還可在緊湊的單芯片設(shè)計中,將TI超低功耗MCU與高度靈活的射頻 (RF)收發(fā)器結(jié)合在一起,以實施無需線纜或電池即能檢測并報告工廠、汽車、辦公室、家庭以及其他環(huán)境中緊急情況的環(huán)境感知智能。例如,AdaptivEnergy的免電池Joule-Thief技術(shù)與完美結(jié)合的TI MSP430微處理器、RF以及eZ430-RF2500開發(fā)套件,可實現(xiàn)多領(lǐng)域環(huán)境智能。圖 6 給出了 Joule-Thief 系統(tǒng)方框圖。

 

  圖 6:Joule-Thief技術(shù)的系統(tǒng)方框圖。

  實現(xiàn)微觀層面的能量采集以及最大程度的節(jié)能,為工程師提供了新的發(fā)展空間,同時也提出了許多嚴峻挑戰(zhàn)。戰(zhàn)勝這些挑戰(zhàn)將帶來諸多益處,包括可進一步開發(fā)“永續(xù)”電子設(shè)備、降低系統(tǒng)生命周期成本、減少產(chǎn)品的環(huán)境影響等。令人振奮的是,現(xiàn)在工具已準備就緒,可隨時啟動開發(fā)工作。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
免费成人高清视频| 国产欧美日韩伦理| 欧美在线欧美在线| 中日韩视频在线观看| 亚洲精品美女在线观看| 亚洲国产精品欧美一二99| 久久99伊人| 久久精品成人一区二区三区| 欧美在线首页| 亚洲第一黄色网| 亚洲国产成人在线播放| 亚洲风情在线资源站| 欧美一区三区三区高中清蜜桃| 亚洲欧美区自拍先锋| 亚洲欧美日韩精品在线| 亚洲欧美日韩第一区| 午夜在线一区| 欧美在线视频导航| 久久成人免费网| 久久精品视频在线看| 亚洲激情成人| 亚洲免费不卡| 一区二区成人精品| 亚洲婷婷免费| 欧美一区成人| 久久久人成影片一区二区三区| 久久久久久伊人| 免费观看在线综合色| 欧美成人精品在线视频| 欧美女激情福利| 国产精品sss| 国产日韩精品入口| 在线观看一区二区视频| 亚洲精品123区| 亚洲神马久久| 亚久久调教视频| 亚洲大胆在线| 一区二区三区鲁丝不卡| 先锋亚洲精品| 久久综合狠狠综合久久综青草| 欧美a一区二区| 欧美视频免费在线| 国产欧美一区二区三区在线看蜜臀| 国模精品一区二区三区色天香| 亚洲电影在线播放| 一本色道久久综合亚洲精品小说 | 欧美在线三级| 欧美va亚洲va国产综合| 欧美视频在线观看| 国产一区二区三区在线观看网站| 亚洲电影下载| 亚洲影院在线| 91久久综合亚洲鲁鲁五月天| 亚洲一区二区三区在线视频| 久久免费视频这里只有精品| 欧美精品一区二区三区久久久竹菊| 国产精品久久999| 在线观看日韩一区| 亚洲视频在线一区| 亚洲全黄一级网站| 欧美一区二区三区在线视频| 欧美本精品男人aⅴ天堂| 国产精品国产自产拍高清av| 精品69视频一区二区三区| 一区二区三区精品| 最近看过的日韩成人| 性感少妇一区| 欧美精品一区在线发布| 国产性猛交xxxx免费看久久| 亚洲精品欧洲| 亚洲福利在线看| 午夜天堂精品久久久久| 欧美激情一区二区| 国产综合久久久久久| 亚洲色图综合久久| 日韩视频在线观看一区二区| 久久久国产精品一区二区三区| 欧美日韩高清不卡| 一区二区亚洲精品国产| 亚洲女人天堂成人av在线| 精品99一区二区| 国产一区二区欧美日韩| 99精品国产高清一区二区| 欧美中文字幕精品| 亚洲欧美激情四射在线日| 欧美国产亚洲另类动漫| 国产综合久久久久久鬼色| 亚洲一区二区三区四区五区黄| 亚洲日本一区二区三区| 久久久人成影片一区二区三区观看 | 国语自产精品视频在线看8查询8| 一本色道久久综合狠狠躁篇的优点| 亚洲国产日韩欧美综合久久| 欧美一区二区免费视频| 欧美日韩精品免费在线观看视频| 影音先锋亚洲精品| 久久不射中文字幕| 久久精品国产免费看久久精品| 国产精品sm| 亚洲乱码日产精品bd| 亚洲国产天堂网精品网站| 久久国产88| 国产精品视区| 亚洲视频www| 亚洲一区影音先锋| 欧美天天影院| 亚洲免费黄色| 一区二区三区高清在线| 欧美黄色一区| 亚洲欧洲在线一区| 99国产精品| 欧美精品啪啪| 亚洲精品国产精品国自产在线| 亚洲国产婷婷| 欧美成人蜜桃| 在线观看精品一区| 最新国产成人av网站网址麻豆| 久久一本综合频道| 极品尤物久久久av免费看| 久久精彩视频| 免费黄网站欧美| 亚洲高清在线观看一区| 亚洲三级免费观看| 欧美理论电影在线播放| 亚洲每日更新| 亚洲一区二区三区四区五区午夜| 国产精品成人va在线观看| 亚洲一品av免费观看| 欧美一区二区三区四区高清| 国产日韩精品一区观看| 欧美一区二区在线免费播放| 久久综合成人精品亚洲另类欧美| 影音先锋亚洲一区| 99精品视频免费在线观看| 欧美日韩国产经典色站一区二区三区| 亚洲美女淫视频| 亚洲在线视频| 国产欧美日韩免费看aⅴ视频| 午夜精品一区二区三区电影天堂| 久久久成人精品| 亚洲国产岛国毛片在线| 亚洲视频在线观看免费| 国产精品久久久久aaaa| 欧美一区二区三区在线观看视频| 噜噜噜91成人网| 亚洲精品一区二区三| 亚洲欧美日韩成人| 国内精品一区二区三区| 亚洲三级电影全部在线观看高清| 欧美日韩精品免费观看视频完整| 亚洲视频一区| 久久久精品一区| 亚洲欧洲日本在线| 午夜精品久久久久久久99热浪潮| 国产一区二区三区四区在线观看 | 精品成人一区二区| 久久精品视频网| 欧美国产日韩a欧美在线观看| 日韩视频第一页| 久久av二区| 亚洲黄色av| 性视频1819p久久| 1000部国产精品成人观看| 在线综合亚洲| 国产日韩精品一区二区三区| 亚洲人成网站777色婷婷| 欧美四级在线观看| 久久精品视频在线| 欧美视频在线免费看| 欧美亚洲一区在线| 欧美日韩爆操| 欧美一区二区三区在线免费观看 | 亚洲欧洲精品一区二区三区不卡 | 久久精品五月| 亚洲精品美女91| 久久aⅴ国产欧美74aaa| 亚洲激情在线观看视频免费| 新片速递亚洲合集欧美合集| 在线播放不卡| 欧美亚洲午夜视频在线观看| 亚洲国产一区二区三区高清| 西瓜成人精品人成网站| 亚洲国产精品成人综合色在线婷婷| 午夜精品999| 亚洲国产欧美一区二区三区丁香婷| 亚洲女人天堂成人av在线| 精品51国产黑色丝袜高跟鞋| 亚洲欧美日韩国产成人| 亚洲国产天堂久久国产91| 久久福利毛片| 一区二区久久久久久| 米奇777在线欧美播放| 亚洲一区二区三区影院| 欧美精品在线视频观看| 亚洲大胆女人| 国产女人aaa级久久久级| 在线视频欧美精品| 亚洲国产视频a| 久久伊人亚洲| 午夜精品国产精品大乳美女|