《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 高壓功率VDMOSFET的設計與研制
高壓功率VDMOSFET的設計與研制
耿凱鴿
西安衛(wèi)光科技有限公司
摘要: 本文在計算機仿真優(yōu)化的基礎上,通過對產(chǎn)品測試結果的分析及工藝條件的調(diào)整,最終實現(xiàn)了成功研制。相對于傳統(tǒng)的流水線小批量投片、反復試制的方法大大節(jié)約了研制成本,收到了事半功倍的效果。隨著半導體生產(chǎn)制造工藝的不斷改進,器件模擬和工藝模擬的精度與實際工藝流程的吻合性將越來越好,使產(chǎn)品的模擬結果更具有實用性、可靠性。
Abstract:
Key words :

摘要:按照功率VDMOSFET正向設計的思路,選取(100)晶向的襯底硅片,采用多晶硅柵自對準工藝,結合MEDICI器件仿真和SUPREM-4工藝仿真軟件,提取參數(shù)結果,并最終完成工藝產(chǎn)品試制,達到了500 V/8 A高壓、大電流VDMOSFET的設計與研制要求。結果證明,通過計算機模擬仿真,架起了理論分析與實際產(chǎn)品試制之間的橋渠。相對于原來小批量投片、反復試制的方法,不僅節(jié)約了時閽,降低了研制成本,而且模擬結果與實際試制結果之間能夠較好地吻合。針對傳統(tǒng)結終端結構的弊端,提出了一種新型結終端結構,大大提高了產(chǎn)品的擊穿電壓和可靠性。
關鍵詞:功率VDMOSFET;計算機模擬仿真;結終端結構

O 引言
    隨著現(xiàn)代工藝水平的提高與新技術的開發(fā)完善,功率VDMOSFET設計研制朝著高壓、高頻、大電流方向發(fā)展,成為目前新型電力電子器件研究的重點。
    本文設計了漏源擊穿電壓為500 V,通態(tài)電流為8 A,導通電阻小于O.85 Ω的功率VDMOSFET器件,并通過工藝仿真軟件TSUPREM-4和器件仿真軟件MEDICI進行聯(lián)合優(yōu)化仿真,得到具有一定設計余量的參數(shù)值。最后在此基礎上進行生產(chǎn)線工藝流片,逐步調(diào)整部分工藝條件,最終實現(xiàn)研制成功。

1 VDMOSFET工作原理
    VDMOSFET是電壓控制器件,在柵極施加一定的電壓,使器件溝道表面反型,形成連接源區(qū)和漏區(qū)的導電溝道?;竟ぷ髟砣鐖D1。

12z.jpg
    當柵源電壓VGS大于器件的閾值電壓VTH時,在柵極下方的P型區(qū)形成強反型層,即電子溝道,此時在漏源電壓VDS的作用下,N+源區(qū)的電子通過反型層溝道,經(jīng)由外延層(N-漂移區(qū))運動至襯底漏極,從而形成漏源電流。
    當VGS小于閾值電壓VTH時,柵極下方不能形成反型層溝道。由于外延層(N-漂移區(qū))的濃度較低,則耗盡層主要在外延層(N-漂移區(qū))一側擴展,因而可以維持較高的擊穿電壓。

2 參數(shù)設計
2.1 外延層電阻率和厚度
    外延層的電阻率ρ越大(摻雜濃度Nepi越小),則器件的擊穿電壓越大。然而,導通電阻Ron也相應增大。因此,在滿足擊穿要求的前提下,ρ越小(Nepi越大)越好;而從導通電阻的角度考慮,又限定了該電阻率的最大值。所以將在計算機仿真過程中,調(diào)整P-body的注入劑量、推阱時間和外延層電阻率、厚度,得出最佳的結構參數(shù)。
2.2 閾值電壓
    影響閾值電壓的因素主要是P-body濃度NA,柵氧化層厚度tox和柵氧化層的面電荷密度Qss,主要通過調(diào)整P阱注入劑量和推阱時間來調(diào)節(jié)閾值電壓Vth。
    此外,柵氧化層厚度tox受柵源擊穿電壓的限制,tox≥VGS/EB,SiO2的臨界電場EB一般為5×106~107 V/cm;由此算得tox的值為30 nm~60 nm;由于P-body為非均勻摻雜,VTH難于用公式準確計算,因此柵氧化層厚度tox和pbody濃度的最佳值需借助于計算機仿真優(yōu)化來確定。
2.3 導通電阻
    對于功率VDMOSFET器件,在不同耐壓下,各部分電阻占導通電阻的比例是不同的。對于高壓VDMOSFET器件,漂移區(qū)(外延層)電阻RD和JFET區(qū)電阻RJ是主要的。
    因此,本設計在滿足耐壓的情況下,采用穿通型結構,以減小外延層厚度,并適當增加JFET區(qū)的寬度,從而減小RD與RJ。
2.4 開關時間
    優(yōu)化開關時間的方法包括兩個方面:減小多晶硅柵的電阻RG和減小輸入電容Cin。在輸入電容中,密勒電容CGD是主要的影響因素。
    減小多晶硅的電阻RG可以在工藝過程中提高多晶硅的摻雜劑量,在版圖設計過程中增加柵極多晶硅與柵極鋁引線的接觸孔;減小輸入電容Cin主要是減小密勒電容CGD,即要增加柵氧化層厚度tox,這會加大閾值電壓VTH,因而需要折中考慮。

3 橫向結構設計
3.1 元胞結構選取
    由于正三角形元胞的電場容易集中,導致漏源擊穿電壓的降低;六角形元胞的對角線與對邊距的比值為,小于方形元胞的對角線與邊長的比值,電流分布的均勻性好,曲率效應??;圓形元胞犧牲率(即A’/Acell,其中A’為元胞邊緣結合處電流不能流過的無效區(qū)面積,Acell為元胞總面積)大于六角形元胞。
    因此,本文所設計的500 V高壓VDMOSFET器件采用正六角形“品”字排列的元胞結構。
3.2 柵電極結構
    功率VDMOSFET由很多小元胞單元并聯(lián)組成。而由于柵極多晶硅電阻的存在,使得在一定的柵極偏壓下,離柵極壓焊點較遠的元胞溝道不能充分開啟。因此,為了降低柵電極材料電阻的影響,通常將柵極壓焊點處的金屬引伸到離壓焊點較遠的元胞單元處。本文所設計的功率管從壓焊點處引伸3條金屬條并與下面的多晶硅相接觸。

12y.jpg
3.3 結終端結構設計
    傳統(tǒng)的場板與場限環(huán)相結合的結終端結構如圖3所示。設計時,如果場板和保護環(huán)的間距過大,場板下的耗盡層擴展到保護環(huán)之前PN結就首先擊穿,保護環(huán)將起不到作用。

12x.jpg
    本文研究的新型結終端結構(如圖3所示),是采用場板覆蓋保護環(huán)的方式,避免了傳統(tǒng)場板與場限環(huán)結構的設計難題,而使其簡單化。

d.JPG
    這種結構在版圖設計上通過增加鋁場板的長度來實現(xiàn),比較容易控制,使得金屬覆蓋過離主結最近的場限環(huán),它不僅起到了場板和場限環(huán)的效果,又避免了傳統(tǒng)結構在場板的邊緣產(chǎn)生新的電場峰值,避免了電壓在場板邊緣和場限環(huán)之間的提前擊穿。

4 仿真優(yōu)化結果
    本設計采用“5個場限環(huán)+鋁場板+多晶場板”的終端結構,通過工藝仿真軟件TSUPREM-4和器件仿真軟件MEDICI進行聯(lián)合仿真,不斷調(diào)整工藝參數(shù),優(yōu)化元胞和結終端結構,最終使各項參數(shù)的仿真指標滿足設計要求(詳見表1)。

e.JPG

5 器件研制結果分析
    本產(chǎn)品研制按照功率VDMOSFET正向設計的思路,選取<100>晶向的襯底硅片,采用硅柵自對準工藝流程,首次流片遵照計算機仿真優(yōu)化的工藝條件,進行工藝摸底;針對測試結果,逐步進行局部工藝調(diào)整,最終使得產(chǎn)品指標滿足設計要求。
    (1)第一次流片
    產(chǎn)品測試結果表明:產(chǎn)品的擊穿電壓均值為438.82 V,并且普遍低于設計要求的500 V。
    經(jīng)分析,其可能存在的原因是:由于襯底反擴散較大,從而導致外延層電阻率偏低,使得擊穿電壓降低。因此,在第二次流片時,將外延電阻率提高5 Ω·cm,其它工藝條件保持不變。
    (2)第二次流片
    測得的擊穿電壓平均值551.68 V,大于500 V,滿足設計要求。然而,隨著外延層電阻率的提高,部分導通電阻已大于設計要求的850 mΩ。
    改進方案:對于高壓功率VDMOSFET器件,JFET電阻在導通電阻的組成部分中,占有相對較大的比重。因此,在擊穿電壓余量充分的條件下,可考慮通過適當減小P-body推結時間的方法,從而增加兩相鄰P-body的間距,降低JFET電阻。因此,在第三次投片時,將P-body的推結時間調(diào)減20分鐘,其它工藝條件相對于第二次流片保持不變。
    (3)第三次流片
    測試結果表明:在減小P-body推結時間后,導通電阻小于850 mΩ,滿足設計要求;雖然產(chǎn)品的擊穿電壓(均值536 V)有所下降,但仍滿足大于500 V的設計要求;其余靜態(tài)參數(shù)、動態(tài)參數(shù)指標也均滿足設計要求。
    因此認為,本文高壓功率VDMOSFET的器件設計與研制工作是成功的。

6 結束語
    本文在計算機仿真優(yōu)化的基礎上,通過對產(chǎn)品測試結果的分析及工藝條件的調(diào)整,最終實現(xiàn)了成功研制。相對于傳統(tǒng)的流水線小批量投片、反復試制的方法大大節(jié)約了研制成本,收到了事半功倍的效果。
    隨著半導體生產(chǎn)制造工藝的不斷改進,器件模擬和工藝模擬的精度與實際工藝流程的吻合性將越來越好,使產(chǎn)品的模擬結果更具有實用性、可靠性。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。
主站蜘蛛池模板: 色综合久久久久综合99| 亚洲国产模特在线播放| 香蕉视频黄在线观看| 国产精品国产欧美综合一区| baoyu116.永久免费视频| 成人毛片免费看| 久久久久无码精品国产H动漫| 最近高清中文在线字幕在线观看 | 福利网址在线观看| 国内精品久久久久影院蜜芽| jazzjazz国产精品一区二区| 性欧美wideos| 中文字幕中韩乱码亚洲大片| 日本电车强视频在线播放| 亚洲av日韩av欧v在线天堂| 欧美性活一级视频| 亚洲欧美日韩国产精品一区| 激情欧美人xxxxx| 人妻内射一区二区在线视频| 999国产精品| 国产私人尤物无码不卡| 香焦视频在线观看黄| 国产精品自在线拍国产手青青机版| aaaaaa级特色特黄的毛片| 天堂草原电视剧在线观看图片高清| 一级二级三级毛片| 成人国产精品视频| 中文天堂最新版在线精品| 我和麻麻的混乱生活| 中文字幕在线观看不卡视频| 无码人妻av一二区二区三区| 久久亚洲AV午夜福利精品一区| 日韩内射美女片在线观看网站| 久草视频精品在线| 日韩黄色一级大片| 亚洲色图第四色| 狠狠躁日日躁夜夜躁2022麻豆| 免费看美女部位隐私直播| 精品一区二区三区在线成人| 八戒八戒www观看在线| 精品国产三级a∨在线欧美|