《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > 現(xiàn)代行波故障測距原理及其在實(shí)測故障分析中的應(yīng)用—A型原理
現(xiàn)代行波故障測距原理及其在實(shí)測故障分析中的應(yīng)用—A型原理
摘要: 長期以來,對輸電線路暫態(tài)行波現(xiàn)象的研究只停留在理論分析和EMTP仿真方面,而線路上的實(shí)際暫態(tài)行波波形要比通過仿真獲得的暫態(tài)行波波形復(fù)雜得多,這使得迄今為止所提出的各種單端行波測距算法難以發(fā)揮作用。
Abstract:
Key words :

長期以來,對輸電線路暫態(tài)行波現(xiàn)象的研究只停留在理論分析和EMTP仿真方面,而線路上的實(shí)際暫態(tài)行波波形要比通過仿真獲得的暫態(tài)行波波形復(fù)雜得多,這使得迄今為止所提出的各種單端行波測距算法難以發(fā)揮作用。為了將利用故障暫態(tài)行波的A型單端現(xiàn)代行波故障測距原理更好地用于實(shí)測波形分析,本文將其劃分為3種獨(dú)立的運(yùn)行模式,即標(biāo)準(zhǔn)模式、擴(kuò)展模式和綜合模式,并給出了各自用于實(shí)測電流暫態(tài)波形分析的典型實(shí)例。實(shí)測故障分析表明,A型現(xiàn)代行波故障測距原理具有很高的準(zhǔn)確性,其絕對測距誤差不超過500 m。
    關(guān)鍵詞:輸電線路;現(xiàn)代行波故障測距;A型原理;電流暫態(tài)

Modern travelling wave based fault location principle and its applications to actual fault analysis-Type A principle 

Chen Ping1, Ge Yaozhong1, Xu Bingyin2, Li Jing2

(1. Xi'an Jiaotong University, Xi'an 710049, China;2. Kehui Electric Co Ltd, Zibo 255031, China)

    Abstract: For a long time, the studies of transient travelling waves on transmission lines limit to theory analyses and EMTP simulations, though the actual transient waveforms of travelling waves are much more complicated. This make it unapplicable to actual fault analyses for all sorts of single-ended travelling wave based location algorithms presented till now. In order to make the Type A single-ended modern travelling wave based fault location principle for transmission lines using fault induced transient travelling waves to be used better in actual waveform based transient analysis, it is classified into three independent modes of operation in this paper, which are called standard mode, extended mode and consolidated mode respectively, and the corresponding demonstrations of actual current transient waveform analyses are given. The actual fault analyses show that the Type A principle possesses very high accuracy, and its absolute location error does not exceed 500 m.
    Key words: transmission lines; modern travelling wave based fault location (MTWFL); Type A principle;current transients

0  引言
   
輸電線路行波故障測距技術(shù)因具有測距精度高和適用范圍廣等優(yōu)點(diǎn),一直為繼電保護(hù)專業(yè)人員所關(guān)注[1]。早在20世紀(jì)50年代,國外就研制出A、B、C、D等4種基本型式的行波故障測距裝置,但因存在可靠性差、構(gòu)成復(fù)雜以及價(jià)格昂貴等問題,終究沒有得到推廣應(yīng)用。
    20世紀(jì)80年代,國內(nèi)外在A型早期行波故障測距原理的基礎(chǔ)上,提出了集保護(hù)和測距為一體的行波距離保護(hù)原理[2,3]。但由于測距算法不可靠以及現(xiàn)場試驗(yàn)條件的限制,行波距離保護(hù)沒有得到進(jìn)一步的發(fā)展。
    20世紀(jì)90年代,我國提出了利用電流暫態(tài)分量的輸電線路行波故障測距原理、算法及其實(shí)現(xiàn)方案[4-8],從而推動(dòng)了現(xiàn)代行波故障測距(MTWFL)技術(shù)的發(fā)展[9],并相繼研制出集A、D、E等多種原理的現(xiàn)代行波故障測距裝置和系統(tǒng),其絕對測距誤差已經(jīng)能夠達(dá)到200 m以內(nèi) [10,11]。在應(yīng)用研究領(lǐng)域,為了進(jìn)一步提高行波故障測距的精度,小波模極大值檢測理論已經(jīng)被越來越廣泛地用于單端和雙端行波故障測距研究[12-15]
    近年來,國內(nèi)學(xué)者開始將A型現(xiàn)代行波故障測距原理用于繼電保護(hù),并提出了基于小波變換的測距式行波距離保護(hù)原理[16,17]
    為了將A型現(xiàn)代行波故障測距原理更好地用于實(shí)測波形分析,本文將其劃分為3種獨(dú)立的運(yùn)行模式,即標(biāo)準(zhǔn)模式、擴(kuò)展模式和綜合模式,并給出了各自用于實(shí)測電流暫態(tài)波形分析的典型實(shí)例。

1  A型現(xiàn)代行波故障測距原理的運(yùn)行模式
    A型現(xiàn)代行波測距原理為單端原理。根據(jù)所檢測反射波性質(zhì)的不同,可以將A型現(xiàn)代行波測距原理分為3種運(yùn)行模式,即標(biāo)準(zhǔn)模式、擴(kuò)展模式和綜合模式。在標(biāo)準(zhǔn)模式下需要檢測故障點(diǎn)反射波,在擴(kuò)展模式下需要檢測對端母線反射波,而在綜合模式下則需要檢測第2個(gè)反向行波浪涌并識別其性質(zhì)。
1.1  標(biāo)準(zhǔn)模式
    標(biāo)準(zhǔn)模式下的A型現(xiàn)代行波故障測距原理利用線路故障時(shí)在測量端感受到的第1個(gè)正向行波浪涌與其在故障點(diǎn)反射波之間的時(shí)延計(jì)算測量點(diǎn)到故障點(diǎn)之間的距離,其基本原理與早期的A型行波故障測距原理相同。為了實(shí)現(xiàn)標(biāo)準(zhǔn)模式下的A型現(xiàn)代行波故障測距原理,在測量端必須能夠準(zhǔn)確、可靠地檢測到故障引起的第1個(gè)正向行波浪涌在故障點(diǎn)的反射波。
1.2  擴(kuò)展模式
    擴(kuò)展模式下的A型現(xiàn)代行波故障測距原理利用線路故障時(shí)在測量端感受到的第1個(gè)反向行波浪涌與經(jīng)過故障點(diǎn)透射過來的故障初始行波浪涌在對端母線反射波之間的時(shí)延計(jì)算對端母線到故障點(diǎn)之間的距離。
    為了實(shí)現(xiàn)擴(kuò)展模式下的A型現(xiàn)代行波故障測距原理,在測量端必須能夠準(zhǔn)確、可靠地檢測到經(jīng)故障點(diǎn)透射過來的故障初始行波浪涌在對端母線的反射波。
    當(dāng)故障點(diǎn)對暫態(tài)行波的反射系數(shù)較小時(shí),在測量端可能檢測不到本端第1個(gè)正向行波浪涌在故障點(diǎn)的反射波,從而導(dǎo)致標(biāo)準(zhǔn)模式下的A型現(xiàn)代行波故障測距原理失效。但在這種情況下,擴(kuò)展模式下的A型現(xiàn)代行波故障測距原理卻能很好地發(fā)揮作用。
1.3  綜合模式
    綜合模式下的A型現(xiàn)代行波故障測距原理利用線路故障時(shí)在測量端感受到的第1個(gè)正向行波浪涌與第2個(gè)反向行波浪涌之間的時(shí)延計(jì)算本端測量點(diǎn)或?qū)Χ四妇€到故障點(diǎn)之間的距離。
    分析表明,無論母線接線方式如何,故障初始行波浪涌到達(dá)母線時(shí)都能夠產(chǎn)生幅度較為明顯的反射波[4]。可見,當(dāng)線路發(fā)生故障時(shí),測量端感受到第1個(gè)正向行波浪涌和第1個(gè)反向行波浪涌的時(shí)間是相同的。測量端感受到的第2個(gè)反向行波浪涌既可以是第1個(gè)正向行波浪涌在故障點(diǎn)的反射波(當(dāng)故障點(diǎn)位于線路中點(diǎn)以內(nèi)時(shí)),也可以是經(jīng)過故障點(diǎn)透射過來的故障初始行波浪涌在對端母線的反射波(當(dāng)故障點(diǎn)位于線路中點(diǎn)以外時(shí)),還可以是二者的疊加(當(dāng)故障點(diǎn)正好位于線路中點(diǎn)時(shí))。對于高阻故障(故障點(diǎn)反射波較弱),即便故障點(diǎn)位于線路中點(diǎn)以內(nèi),在測量點(diǎn)感受到的第2個(gè)反向行波浪涌也有可能為對端母線反射波。對于故障點(diǎn)電弧過早熄滅的故障(故障點(diǎn)不存在反射波),無論故障點(diǎn)位置如何,在測量點(diǎn)感受到的第2個(gè)反向行波浪涌均為對端母線反射波。
    因此,當(dāng)線路故障時(shí),如果在測量端能夠正確識別所感受到第2個(gè)反向行波浪涌的性質(zhì),即可實(shí)現(xiàn)單端行波故障測距。具體說來,當(dāng)?shù)?個(gè)反向行波浪涌為本端第1個(gè)正向行波浪涌在故障點(diǎn)的反射波時(shí),二者之間的時(shí)間延遲對應(yīng)于本端測量點(diǎn)到故障點(diǎn)之間的距離;當(dāng)?shù)?個(gè)反向行波浪涌為對端母線反射波時(shí),它與本端測量點(diǎn)第1個(gè)正向行波浪涌之間的時(shí)間延遲對應(yīng)于對端母線到故障點(diǎn)之間的距離。
    可見,為了實(shí)現(xiàn)綜合模式下的A型現(xiàn)代行波故障測距原理,在測量端必須能夠準(zhǔn)確、可靠地檢測到故障引起的第2個(gè)反向行波浪涌并識別其性質(zhì)。

2  利用電流暫態(tài)分量實(shí)現(xiàn)A型行波測距原理的直接波形分析法
2.1  行波故障測距基本關(guān)系
    從行波故障測距的角度,可以將母線分為兩種接線類型[4],其中第1類母線連接有同一電壓等級的多回線路,而第2類母線只連接有1回線路。電力系統(tǒng)中的絕大多數(shù)母線均為第1類母線。相對于來自線路MN方向的行波而言,測量端母線M的等效波阻抗等于該母線上除線路MN以外所有線路波阻抗和母線分布電容的并聯(lián)阻抗。假定連接到母線M的所有線路具有相同的波阻抗,則可以將母線M對來自線路MN方向的電壓暫態(tài)行波的時(shí)域反射系數(shù)KMR和時(shí)域透射系數(shù)KMT表示為:
   
    式中:F-1表示傅里葉反變換;K為除線路MN以外連接到母線M的線路回?cái)?shù)(假定K≥2);C為母線M的分布電容;ZC為線路波阻抗。
    假定M端電流正方向?yàn)槟妇€到線路方向,則線路MN故障產(chǎn)生的初始行波浪涌到達(dá)本端時(shí)所引起的本線路電流暫態(tài)故障分量可以表示為:

    M端第1個(gè)正向行波浪涌eF(t)(即故障初始行波浪涌在母線M的反射波)在故障點(diǎn)的反射波到達(dá)母線M時(shí)所引起的本線路電流暫態(tài)故障分量可以表示為:
  
    式中:KFR為電壓暫態(tài)行波在故障點(diǎn)的反射系數(shù)(假定為常數(shù))。
    故障初始行波浪涌在線路MN對端母線N的反射波透過故障點(diǎn)到達(dá)母線M時(shí)所引起的本線路電流暫態(tài)故障分量可以表示為:
   
    式中:KFT為電壓暫態(tài)行波在故障點(diǎn)的透射系數(shù)(假定為常數(shù));KNR為電壓暫態(tài)行波在對端母線N的反射系數(shù);   為暫態(tài)行波從故障點(diǎn)到對端母線N的傳播時(shí)間。
    比較式(3)~(5)可以得到:
 
    暫態(tài)行波在母線M和故障點(diǎn)F的反射系數(shù)恒為負(fù)值,在故障點(diǎn)的透射系數(shù)恒為正值。因此,故障初始行波浪涌和故障點(diǎn)反射波到達(dá)母線M時(shí)引起線路MN的電流暫態(tài)故障分量Δi1(t)和Δi2(t)具有相同的極性,二者之間的時(shí)延等于暫態(tài)行波在M端測量點(diǎn)與故障點(diǎn)之間往返一次的傳播時(shí)間。故障初始行波浪涌與其在故障線路對端母線N的反射波到達(dá)M端母線時(shí)引起的本線路電流暫態(tài)故障分量Δi1(t)與Δi2(t)在某一初初始時(shí)段內(nèi)(取決于對端母線N的接線方式)具有相反的極性[4],二者之間的時(shí)延等于暫態(tài)行波在故障點(diǎn)與對端母線N之間往返一次的傳播時(shí)間。
    可見,當(dāng)線路發(fā)生故障時(shí),通過比較來自故障方向的行波浪涌到達(dá)測量端母線時(shí)引起故障線路電流暫態(tài)分量的初始極性可以識別來自故障點(diǎn)和線路對端母線的反射波。在這種情況下,只要能夠正確區(qū)分來自故障線路正方向和反方向的行波浪涌到達(dá)測量端母線時(shí)引起本線路的電流暫態(tài)分量,即可實(shí)現(xiàn)各種運(yùn)行模式下的A型現(xiàn)代行波故障測距原理。
2.2  來自故障方向行波浪涌引起電流暫態(tài)分量的識別
    來自故障方向任一點(diǎn)X的行波浪涌到達(dá)母線M時(shí)所引起的故障線路以及各相鄰健全線路的電流暫態(tài)分量可以表示為:
   
    式中:  為暫態(tài)行波從X點(diǎn)到母線M的傳播時(shí)間;K為相鄰健全線路回?cái)?shù)(設(shè)K≥2)。
    由于反射系數(shù)KMR恒小于0,因此式(9)表明,來自故障方向的任一行波浪涌到達(dá)母線M時(shí)所引起的故障線路電流暫態(tài)分量和其它所有相鄰健全線路電流暫態(tài)分量之間存在反極性的關(guān)系。
    同理可知,來自任一線路正方向的行波浪涌到達(dá)母線M時(shí)所引起的該線路電流暫態(tài)分量和其它所有線路(包括故障線路)電流暫態(tài)分量之間存在反極性的關(guān)系。因此,通過比較行波浪涌到達(dá)母線M時(shí)所引起各線路電流暫態(tài)分量的極性即可識別來自故障方向行波浪涌所引起的電流暫態(tài)分量。
    當(dāng)母線上出線較多時(shí),來自故障方向的行波浪涌到達(dá)母線時(shí)所引起各健全線路的電流暫態(tài)分量幅度很小,甚至可以忽略,從而簡化了故障測距過程。
    需要指出,在以上的分析中沒有考慮線路損耗和線路參數(shù)的依頻特性,這些影響因素將導(dǎo)致行波在傳播過程中的衰減和畸變,但上述各行波浪涌之間的極性關(guān)系仍然成立。
2.3  直接波形分析法的實(shí)施步驟
    利用電流暫態(tài)分量的直接波形分析法實(shí)現(xiàn)A型現(xiàn)代行波故障測距原理的具體步驟如下(以綜合模式為例):
    1)通過比較同母線上各線路電流故障暫態(tài)分量波形中第1個(gè)波頭分量的極性選擇故障線路;
    2)對于故障線路電流暫態(tài)波形中的每一個(gè)波頭分量,通過比較它與同一時(shí)刻其它線路電流暫態(tài)分量的極性確定來自故障方向行波浪涌引起的第2個(gè)波頭分量;
    3)通過比較來自故障方向行波浪涌引起的故障線路電流暫態(tài)波形中第2個(gè)波頭分量與第1個(gè)波頭分量的初始極性確定第2個(gè)波頭分量是由故障點(diǎn)反射波所引起(二者同極性),還是由對端母線反射波所引起(二者反極性),進(jìn)而確定故障點(diǎn)位置。

3  實(shí)測故障分析
3.1  本端和對端母線均為第1類母線
    1997年12月14日2時(shí)17分49秒,甘肅天水供電局所管轄的330 kV隴馬線(全長311 km)發(fā)生A相接地故障,其中隴西側(cè)含故障線路在內(nèi)同母線上3條線路的故障相電流暫態(tài)故障分量波形如圖1所示。顯然,本端母線為第1類母線。在故障線路上,來自故障方向行波浪涌引起的第2個(gè)波頭分量與初始波頭分量始終具有相反的極性,因而必為對端母線反射波所引起,而且對端母線也是第1類母線,從而可以直接獲得擴(kuò)展和綜合模式下的測距結(jié)果為75.8 km,如圖1(a)所示。標(biāo)準(zhǔn)模式下的測距結(jié)果可以間接獲得(本例中難以直接獲得),它應(yīng)該等于故障線路實(shí)際導(dǎo)線長度與擴(kuò)展或綜合模式下測距結(jié)果之差值,并且可以近似表示為(km)。從故障線路電流暫態(tài)分量波形中可以發(fā)現(xiàn),在對應(yīng)于該近似測距結(jié)果的位置并不存在暫態(tài)波頭分量,但在其鄰域內(nèi)距離本端235.6 km處存在由來自故障方向行波浪涌所引起的暫態(tài)波頭分量,如圖1(b)所示,從而可以將標(biāo)準(zhǔn)模式下的測距結(jié)果修正為235.6 km。實(shí)際故障點(diǎn)位于距本端(235~236)km處。在本例中,對端母線反射波先于故障點(diǎn)反射波到達(dá)本端測量點(diǎn),因而故障點(diǎn)位于線路中點(diǎn)以外(靠近對端)。


    2002年4月5日14時(shí)33分7秒,黑龍江綏化電業(yè)局所管轄的220 kV康綏甲線(全長64.3 km)發(fā)生B相接地故障,其中康金側(cè)含故障線路在內(nèi)同母線上3條線路的故障相電流暫態(tài)故障分量波形如圖2所示。故障線路兩端母線都連接有多條其它線路,故兩端母線均為第1類母線。在故障線路上,來自故障方向行波浪涌引起的第2個(gè)波頭分量與初始波頭分量始終具有相同的極性,因而必為故障點(diǎn)反射波所引起,從而可以直接獲得標(biāo)準(zhǔn)和綜合模式下的測距結(jié)果為27.4 km,如圖2(a)所示。在故障線路上,來自故障方向行波浪涌引起的第3個(gè)波頭分量(疊加在暫態(tài)波形的第2個(gè)暫態(tài)分量上)與初始波頭分量始終具有相反的極性,因而必為線路對端母線反射波所引起,從而可以直接獲得擴(kuò)展模式下的測距結(jié)果為36.9 km,如圖2(b)所示。實(shí)際故障點(diǎn)位于距對端37 km處。在本例中,故障點(diǎn)反射波先于對端母線反射波到達(dá)本端測量點(diǎn),因而故障點(diǎn)位于線路中點(diǎn)以內(nèi)(靠近本端)。


3.2  本端和對端母線分別為第1類和第2類母線
    1997年10月2日13時(shí)46分47秒,山東德州電業(yè)局所管轄的110 kV臨禹線(全長43 km)發(fā)生B相接地故障,其中臨邑側(cè)含故障線路在內(nèi)同母線上3條線路的故障相電流暫態(tài)故障分量波形如圖3所示,可見該波形較為復(fù)雜。仔細(xì)分析可以發(fā)現(xiàn),在故障距離為26.9 km處存在由來自故障方向行波浪涌引起的波頭分量,其初始極性與故障初始波頭分量的極性相反,但二者很快變?yōu)橥瑯O性,因而必為線路對端母線反射波所引起,而且對端母線必為第2類母線,從而可以直接獲得擴(kuò)展模式下的測距結(jié)果為26.9 km,如圖3(a)所示。標(biāo)準(zhǔn)和綜合模式下的測距結(jié)果可以間接獲得,并且近似為(km)。從故障線路電流暫態(tài)分量波形中可以發(fā)現(xiàn),在對應(yīng)于該近似位置的鄰域內(nèi)距離本端16.5 km處存在由來自故障方向行波浪涌所引起的暫態(tài)波頭分量,如圖3(b)所示,從而可以將標(biāo)準(zhǔn)和綜合模式下的測距結(jié)果修正為16.5 km。實(shí)際故障點(diǎn)位于距本端16 km處(線路中點(diǎn)以內(nèi))。


    2001年4月29日4時(shí)3分25秒,黑龍江綏化電業(yè)局所管轄的220 kV綏鐵線(全長96.4 km)發(fā)生A相接地故障,其中綏化側(cè)含故障線路在內(nèi)同母線上3條線路的故障相電流暫態(tài)故障分量波形如圖4所示。在故障距離為34 km處存在由來自故障方向行波浪涌引起的2個(gè)波頭分量,其初始極性與故障初始波頭分量的極性相反,但二者很快變?yōu)橥瑯O性,因而必為線路對端母線反射波所引起,而且對端母線必為第2類母線,從而可以直接獲得擴(kuò)展和綜合模式下的測距結(jié)果為34 km,如圖4(a)所示。在故障距離為62.4 km處存在由來自故障方向行波浪涌引起的第3個(gè)波頭分量,其極性與故障初始波頭分量的極性始終相同,因而必為故障點(diǎn)反射波所引起,從而可以直接獲得標(biāo)準(zhǔn)模式的測距結(jié)果為62.4 km,如圖4(b)所示。實(shí)際故障點(diǎn)位于距本端62.525 km處(線路中點(diǎn)以外)。



4   結(jié)語
    本文將A型現(xiàn)代行波故障測距原理劃分為標(biāo)準(zhǔn)、擴(kuò)展及綜合等3種獨(dú)立的運(yùn)行模式,并通過利用電流暫態(tài)分量的直接波形分析法將各種運(yùn)行模式用于實(shí)際故障產(chǎn)生的電流暫態(tài)波形分析。實(shí)測故障分析表明,A型現(xiàn)代行波故障測距原理的絕對測距誤差不超過500 m。
    由于有些故障暫態(tài)波形較為復(fù)雜,使得并非在所有運(yùn)行模式下都能夠直接獲得可靠的測距結(jié)果。為了進(jìn)一步提高A型現(xiàn)代行波故障測距原理的可靠性,結(jié)合實(shí)際故障暫態(tài)波形,深入研究實(shí)時(shí)、可靠的現(xiàn)代行波檢測與識別算法是非常必要的。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久热精品视频在线观看| 日韩亚洲视频在线| 欧美综合国产| 欧美日韩精品一本二本三本| 亚洲色图制服丝袜| 裸体歌舞表演一区二区| 日韩视频一区二区三区| 久久久免费精品视频| 一本久久精品一区二区| 久久综合一区| 亚洲欧美日韩视频二区| 欧美日韩一卡二卡| 亚洲国产精品久久久久秋霞不卡 | 一区二区欧美视频| 欧美国产综合视频| 91久久久久久国产精品| 国产网站欧美日韩免费精品在线观看 | 久久国产精品免费一区| 一本综合久久| 欧美日韩综合视频| 亚洲调教视频在线观看| 中文日韩电影网站| 欧美日韩中文精品| 亚洲免费影视| 亚洲午夜精品一区二区| 国产精品久久亚洲7777| 午夜精品久久久久久99热软件| 亚洲一区二区精品在线| 国产精品影音先锋| 久久精品人人做人人综合| 久久av资源网| 亚洲国产精品va在线观看黑人| 欧美91大片| 一区二区三区蜜桃网| 一区二区三区四区五区精品| 国产精品久久久久秋霞鲁丝| 亚洲欧美伊人| 久久国产精品第一页 | 国产亚洲综合在线| 欧美不卡激情三级在线观看| 99re66热这里只有精品3直播| 99国产精品久久久久久久成人热 | 亚洲午夜三级在线| 欧美中文字幕视频在线观看| 亚洲国产欧美一区| 亚洲人成毛片在线播放| 欧美日韩国产小视频在线观看| 亚洲自拍偷拍视频| 久久精品视频va| 一本色道久久加勒比精品| 国内外成人免费激情在线视频网站| 欧美成人a视频| 久久精品视频在线播放| 一区二区三区视频在线观看| 午夜在线视频观看日韩17c| 亚洲国产日韩在线| 国产午夜精品在线| 国产精品多人| 欧美久久久久久蜜桃| 久久久国产精品亚洲一区| 一区二区高清| 亚洲激情婷婷| 亚洲成色www8888| 国产精品99久久99久久久二8| 在线播放日韩| 狠狠干狠狠久久| 国模套图日韩精品一区二区| 国产精品久久久久久久久免费桃花 | 亚洲一区二区视频在线| 亚洲精品网址在线观看| 国产一区二区精品| 国产一区二区你懂的| 国产精品网站在线播放| 国产精品久久久久久久久久ktv| 欧美啪啪成人vr| 欧美精品123区| 欧美日韩亚洲一区二区三区四区 | 亚洲精品美女免费| 99精品福利视频| 亚洲另类视频| 亚洲剧情一区二区| 一区二区三区国产在线观看| 一区二区日韩| 亚洲小说欧美另类社区| 亚洲伊人伊色伊影伊综合网| 亚洲一区二区三区影院| 亚洲欧美国产另类| 欧美一区二区观看视频| 欧美在线免费观看视频| 亚洲国产精品va在线看黑人动漫| 久久精品日韩一区二区三区| 亚洲国产精品久久人人爱蜜臀 | 国产亚洲精品久久飘花 | 欧美在线视频网站| 欧美电影电视剧在线观看| 欧美美女bbbb| 国产精品夜夜夜一区二区三区尤| 国产一区二区在线观看免费| 在线观看视频亚洲| 99精品99| 亚洲国产婷婷香蕉久久久久久| 在线视频你懂得一区二区三区| 欧美一区成人| 欧美日韩视频一区二区三区| 国产日韩欧美在线观看| 亚洲激情午夜| 久久精品30| 亚洲在线观看视频网站| 久久午夜视频| 国产精品日日做人人爱| 亚洲国产黄色| 欧美影院成年免费版| 亚洲欧美日韩高清| 欧美日韩不卡视频| 一区免费观看视频| 香蕉av777xxx色综合一区| 日韩视频在线一区| 久久综合久久综合久久| 国产精品日韩欧美一区二区三区| 亚洲精品美女在线观看播放| 久久精品国产99国产精品澳门| 欧美亚洲在线视频| 国产精品成人一区二区三区吃奶| 美女尤物久久精品| 国产欧美欧美| 在线亚洲欧美| 亚洲一区二区三区在线| 欧美精品一区二区三区视频| 一区在线观看视频| 久久国产精品黑丝| 久久久亚洲综合| 国产亚洲一区二区三区在线观看| 这里只有精品丝袜| 一区二区三区蜜桃网| 亚洲日本一区二区三区| 免费av成人在线| 亚洲高清av在线| 99视频一区| 国产精品成人va在线观看| 这里只有精品视频| 欧美在线看片| 狠狠狠色丁香婷婷综合激情| 久久国产66| 欧美国产精品久久| 9人人澡人人爽人人精品| 亚洲一区日韩在线| 国产欧美日本一区二区三区| 午夜久久99| 男人插女人欧美| 亚洲精品日韩精品| 亚洲综合精品一区二区| 国产日韩精品一区二区三区在线 | 在线观看欧美黄色| 在线视频一区观看| 国产精品一区二区久激情瑜伽| 小黄鸭精品aⅴ导航网站入口| 久久五月天婷婷| 亚洲精品影院在线观看| 亚洲欧美三级伦理| 一区二区在线免费观看| 亚洲一区在线观看免费观看电影高清| 国产精品视频一二三| 亚洲国产成人porn| 欧美日韩免费一区二区三区视频| 亚洲深夜影院| 免费永久网站黄欧美| 亚洲视频在线观看三级| 久久久在线视频| 野花国产精品入口| 久久免费午夜影院| 亚洲视频第一页| 欧美女主播在线| 久久国产加勒比精品无码| 欧美三级电影网| 91久久久久久| 红桃视频亚洲| 久久精品一区二区三区中文字幕| 日韩一级在线观看| 欧美电影免费观看高清| 欧美在线视频播放| 国产九九精品| 亚洲欧美日韩中文在线制服| 日韩视频免费观看| 欧美激情一区二区三级高清视频| 久久精品国产在热久久| 国产欧美日韩伦理| 欧美与黑人午夜性猛交久久久| 一区二区三区四区蜜桃| 欧美看片网站| 99国产精品久久| 亚洲精品日本| 欧美日韩黄色大片| 一本色道久久精品| 亚洲人成人一区二区在线观看| 蜜臀久久久99精品久久久久久| 亚洲电影免费在线观看| 狠狠色丁香婷婷综合影院| 久久久女女女女999久久| 久久精品国产亚洲aⅴ| 亚洲第一搞黄网站|