《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 基于HPI接口的雙CPU水中目標探測平臺設計
基于HPI接口的雙CPU水中目標探測平臺設計
來源:電子技術應用2011年第9期
閆永勝, 王海燕, 白 峻, 朱夢陽
(西北工業大學 航海學院, 陜西 西安 710072)
摘要: 針對水中目標探測平臺低功耗和實時性的需求,提出了一種基于HPI接口的雙CPU目標探測平臺設計方案,并給出了硬件實現。首次將并行的HPI接口應用到水中目標探測平臺上,有效地提高了數據交換速度;采用“Sleep/Wake”工作體制進行軟件編程,降低了系統功耗。消聲水池實驗運行結果表明,該平臺設計可行,各功能模塊均正常工作,系統平均功耗在18 mW左右,達到了預期的設計指標。
中圖分類號: TP274
文獻標識碼: A
文章編號: 0258-7998(2011)09-145-04
Design on a dual-CPU underwater target detection platform based on HPI interface
Yan Yongsheng, Wang Haiyan, Bai Jun, Zhu Mengyang
College of Marine Northwestern Polytechnical University,Xi'an 710072,Chin
Abstract: The low-power consumption and real-time demand of the underwater target detection platform is focused on. A dual-CPU target detection hardware platform based on host port interface which is called HPI for short is designed. The parallel HPI connection pattern is applied for the first time on the underwater target detection platform. In this way, the data exchange speed is raised effectively. In the aspect of the software programming, a“sleep and wake”work system is employed to reduce the system power consumption. The experimental results in the anechoic water tank show that the design of the hardware platform is feasible, each functional module works normally, and the average power consumption is about 18 mW. So the platform satisfies the different requests of target detection system.
Key words : target detection platform; MSP430; HPI; low-power consumption


 自動目標識別系統ATR(Automatic Target Recognition)的基本功能是對目標進行探測、識別及分類[1],而水中目標探測平臺是一種特殊的自動目標識別系統。
 水中ATR平臺一般需要對信號進行連續采集并且實時處理, 以獲取目標的特征信息,從而進行目標識別和參數估計。由于水中ATR平臺工作環境的特殊性,要求整個硬件系統具有極低的功耗。以往的水中ATR平臺一般采用ADC+DSP(Digital Signal Processor)+FPGA(Field Programmable Gates Array)構架[2]來實現目標的檢測與識別。FPGA主要負責地址譯碼和數據緩存,這種設計結構簡化了DSP軟件設計任務。但是由于FPGA工作電流一般是幾十毫安,導致系統功耗較大。為了克服傳統的基于單CPU的探測平臺功耗高、控制復雜等缺點,本系統采用了MCU+DSP的雙CPU的結構。該結構的關鍵在于快速高效地實現兩者之間通信。傳統的基于串行多通道緩沖串口McBSP(Multichannel Buffered Serial Ports)的通信模式通信帶寬利用率低,數據傳輸速率低,成為整個系統實時處理的瓶頸。為此,本文設計了基于HPI (Host Port Interface)接口的MSP430與DSP主從式雙CPU目標探測系統,使ATR平臺滿足系統低功耗和實時性的需求。
1 HPI接口
 目前比較常用的多CPU之間連接方式主要有兩種:直接互連和間接互連。直接互連主要通過SPI串口、HPI并口實現互連;間接互連主要通過FPGA、CPLD等可編程邏輯器件、雙端口RAM、FIFO存儲器等實現互連。
 在ATR平臺中,主要考慮使用直接互連方法。一方面,沒有額外增加器件,降低了系統功耗;另一方面,大大簡化了多CPU之間的硬件連接。SPI接口方式連接簡單,但數據傳輸的理論傳輸速度只能達到12.5 MB/s,在一些實時性要求比較高的場合,數據傳輸成為整個信號處理能力提高的瓶頸,致使多CPU之間通信效率下降。而DSP的HPI接口提供了一個16 bit的并行數據接口,理論傳輸速度達到50 MB/s,遠高于串行接口傳輸速度。因此,選用HPI接口可以很容易地實現大容量數據的快速傳輸。通過HPI,主機可以訪問DSP內部的雙訪問數據存儲器(DARAM),此時,DSP相當于主機的一個外設。

2 系統設計
 根據工程設計要求,水中ATR平臺必須具備低功耗特點,因此選擇德州儀器公司的超低功耗微控制器MSP430F149作為系統的主CPU。其擁有5種低功耗模式,在低功耗模式LPM3下,只需要2.0 μA供電電流,采用3.3 V供電情況下,全速運行也只需要420 μA的電流。它還擁有多種時鐘模式,通過程序控制,可以靈活地選擇不同的時鐘來降低系統功耗[4]。選擇TI DSP家族中功耗優化產品TMS320C55X系列中的TMS320VC5509A作為從CPU,其最高主頻為200 MHz,功耗僅為C54的1/6??梢愿鶕钑r鐘不同靈活選擇1.2 V、1.35 V和1.6 V內核電壓[5],電壓越高,DSP最高主頻越大,功耗越大,在實際的設計過程中,根據算法實時性需求,靈活選擇內核電壓以達到降低系統功耗的目的。
 MSP430F149主要負責數據采集,DSP電源管理,以及一些運算量比較小的算法的實現(如系統中的預警檢測算法)TMS320VC5509A主要實現運算量較大的目標識別及參數估計算法。雙CPU之間通信采用HPI接口,實現主從機之間的無縫連接。具體硬件結構框圖如圖1所示。

    系統的基本工作流程是信號經過模擬預處理之后,在單片機MSP430的控制下,利用其內部的ADC對經調理后的信號進行采樣。將采集到的數據做預警檢測,當預警發現可疑目標時啟動DSP,MSP430將需要分析的數據傳輸到DSP中,進行高階譜分析、小波變換等參數估計及特征提取算法,最后把結果傳回MSP430,再由單片機控制其他電路工作。
2.1 電源模塊
    本模塊主要是由雙輸出電源調整芯片TPS73HD301和外圍器件構成。具體硬件連接如圖2所示。

 

 

    THP73HD301輸出3.3 V和1.2 V兩路直流電源,其使能引腳接入到MSP430的IO口,可以方便地實現DSP電源的控制,從而決定DSP的工作與否。只有在需要進行參數估計及特征提取等運算量大的運算時才啟動DSP。這樣的電源設計模式可以有效地控制系統功耗。因為系統的功耗主要集中在DSP上,而MSP430的功耗極低。
2.2 數據采集
 系統數據采集主要由MSP430內部的12 bit ADC12完成,其最高采樣率達200 KS/s;具有多種轉換模式,可以通過軟件靈活選擇;依據系統采樣要求,對ADC12內部寄存器進行配置。配置的內容主要包括采樣選擇通道、參考電壓、采樣時鐘、采樣模式、采樣保持時間等。根據采樣時序要求,需要配置的寄存器有ADC12CTL0、ADC12CTL1、ADC12MCTLx。本系統中選擇單通道重復采樣模式,采樣觸發源選擇Timer_A.OUT1,采樣頻率完全由Timer_A來決定,在ADC12的中斷服務程序中讀取采樣結果。只有需要進行數據搬移時才中斷MSP430的CPU,CPU上電工作,這種“Sleep/Wake”工作體制使得功耗較大的CPU工作時間大大減少,從而降低了系統功耗。
 此外,HPI傳輸數據時,ADC數據存儲采用“乒乓操作”,在RAM中開辟一個緩沖區,當該緩沖區半滿時,讀數據指針指向整個緩沖區開始,寫數據指針指向另外一半緩沖區開始。這樣的設計保證數據高效、快速地傳輸到DSP中。
2.3 信號處理模塊
 數字信號處理的核心是TI公司的低功耗16 bit定點DSP-TMS320VC5509A,其擁有一個增強型主機接口(HPI),可以與主處理器(如PC、DSP、ARM、51系列、MSP430系列單片機)構成主從構架處理器,增強系統的靈活性和可操作性。
 信號處理模塊的主要作用就是對采集到的數據作進一步的分析,以便更加可靠地探測到目標。信號處理算法主要包括有限帶寬聲源級估計、高階譜分析中的雙譜分析、小波分析等。此外,在搭建好硬件DSP平臺上編寫相應的驅動程序如(與MSP430通信的HPI接口程序、I2C模式的Bootloader程序)。程序的開發均采用模塊化編程,以便于后續資源的利用。
 在本系統中,為了進一步降低系統功耗,在編寫信號處理模塊程序時,采用“Sleep/Wake”工作體制,當數據需要實時處理時,系統各個模塊均處于工作狀態,此時功耗達到最大值。數據處理完畢后系統進入低功耗或者DSP掉電模式,此時系統進入微功耗狀態,功耗達到最低值;微功耗狀態和工作狀態之間的切換由系統內部中斷源產生。雙CPU通信就是基于此機制,由HPI中斷源喚醒DSP,DSP開始工作,MSP430進入低功耗模式。DSP結束數據處理之后,中斷源喚醒MSP430,MSP430開始工作,DSP進入低功耗模式,這種交替的Sleep-Wake-Sleep模式使MSP430和DSP交替工作,DSP工作時間大大減少,有效地降低了系統功耗。延長了水中ATR平臺的工作時間。
3 HPI通信
3.1 HPI硬件連接

  

3.2 HPI軟件操作
    在本文所述系統中,MSP430擁有對DSP的控制權,HPI通信是基于中斷方式進行的:主機通過對采集到的信號進行簡單算法的目標檢測,如發現可疑目標,啟動DSP,開始通過HPI接口傳輸數據。傳輸結束之后,中斷DSP,DSP響應中斷,開始進行復雜的特征提取算法檢測。處理結束之后,置HINT為高,中斷MSP430,DSP停機,掉電,主機繼續工作。
 從機DSP相當于主機MSP430的一個存儲器映射,通過HPI接口,MSP430可以訪問C55X系列DSP內部映射地址范圍為000060H~003FFFH 的DRAM,HPI不能直接訪問其他外設寄存器,如果主機需要從其他外設獲取數據時,則必須通過CPU或6個DMA通道中的一個,先將數據搬移到該DRAM中[6]。
 HPI接口驅動程序主要由MSP430接口程序和DSP接口程序組成。MSP430和DSP的HPI接口通信流程圖如圖4所示。

4 系統調試及消聲水池實驗
 在上述搭建的水中低功耗ATR硬件平臺上編程實現雙CPU之間HPI通信、預警檢測算法以及目標特征提取算法等,從而檢測系統硬件平臺的可靠性。
 HPI通信是本硬件系統的關鍵所在,圖5中上側是MSP430集成開發環境IAR中ADC采集1 kHz正弦波的256點數據,采樣率為4 096 Hz。圖5下側是DSP中存入DARAM中的數據通過CCS繪制的波形圖以及DRAM中地址為0x00060處的數據。通過對比發現,MSP430中的數據經過HPI接口傳輸到了DSP的SDRAM中,由此可以看出HPI數據傳輸的正確性。

    為了測試水中目標探測平臺的性能,在西北工業大學消聲水池對該平臺樣機進行了測試,測試現場布置如圖6所示。功耗測試結果如下:當探測系統處于預警檢測狀態時,系統平均功耗為0.28 mW;當探測系統處于全速工作狀態時,系統的峰值功耗為118.2 mW。考慮實際系統的工作時間,按照85%的預警時間+15%的全速工作時間計算,系統整機平均功耗為17.97 mW。系統測試結果如下:正確預警檢測概率為94%,A類目標識別率達到86.3%,B類目標識別率達到了87.2%,滿足設計要求。

    本文在分析了自動目標探測平臺特點的基礎上,提出了一種基于HPI接口的MSP430+DSP主從結構的目標探測硬件平臺,并實現了主從CPU的HPI通信、目標檢測和參數估計等算法。通過HPI接口通信,可以實現大容量數據快速高效的傳輸。采用這種雙CPU的構架和使用“Sleep/Wake”編程工作體制大大降低了系統功耗,在采用電池供電的便攜式數據處理和目標探測識別平臺中具有很好的應用前景。
參考文獻
[1] 嚴勝剛,孟慶軍.基于DSP和FPGA水下目標主動跟蹤系統硬件設計[J].魚雷技術,2009,17(1):31-34.
[2] 王甜,王建民,楊樹謙,等.圖像自動目標識別技術發展[J].飛航導彈,2005(11):41-47.
[3] Texas Instruments.TMS320VC5503/5507/5509 DSP host  port interface (HPI) reference guide[EB/OL]. 2004.
[4] Texas Instruments.MSP430x13x, MSP430x14x, MSP430x14x1  mixed signal mircrocontroller datasheet[EB/OL]. 2004.
[5] Texas Instruments.TMS320VC5509A fixed-point digital signal processor datasheet[EB/OL]. 2008.
[6] Texas Instruments. Using the TMS320VC5509 enhanced

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲一区美女视频在线观看免费| 欧美一区=区| 亚洲一区二区精品| 亚洲欧洲一区二区三区在线观看| 狠狠干综合网| 国产欧美日韩在线| 国产精品入口福利| 国产精品看片资源| 国产精品久久久久aaaa九色| 欧美日韩午夜视频在线观看| 欧美极品在线播放| 欧美精品久久一区二区| 欧美成人免费小视频| 免费成人高清视频| 欧美成年人视频网站| 欧美成人在线免费观看| 免费亚洲电影在线| 欧美va天堂va视频va在线| 免费一级欧美在线大片| 欧美成人精品1314www| 欧美激情一区二区三区高清视频| 欧美精品免费视频| 欧美日韩一区二区三区| 欧美日韩一区二区在线| 欧美午夜片在线免费观看| 国产精品高清网站| 国产欧美日韩免费| 国产综合欧美| 在线看国产一区| 最近看过的日韩成人| 夜夜嗨av一区二区三区中文字幕 | 牛牛影视久久网| 欧美成人第一页| 欧美日韩亚洲视频| 国产精品影片在线观看| 好吊一区二区三区| 91久久在线播放| 亚洲一级特黄| 久久黄色级2电影| 亚洲免费成人| 亚洲欧美在线高清| 久久久综合网站| 欧美精品国产精品| 国产精品一区二区久久精品| 国内成人在线| 99精品国产福利在线观看免费| 亚洲性图久久| 亚洲电影下载| 亚洲一区二区三区成人在线视频精品| 欧美亚洲日本网站| 美女视频网站黄色亚洲| 欧美日韩国产亚洲一区| 国产酒店精品激情| 亚洲国产综合在线| 亚洲一区二区在线免费观看| 亚洲国产高清在线| 亚洲欧美精品suv| 开心色5月久久精品| 亚洲国产日韩欧美综合久久| 日韩视频免费看| 欧美亚洲免费高清在线观看| 亚洲麻豆一区| 欧美在线观看视频| 欧美黄色影院| 国产精品一区二区三区四区| 亚洲国产成人av| 午夜在线视频观看日韩17c| 亚洲精品国产精品久久清纯直播| 亚洲欧美日韩国产一区二区| 免费在线播放第一区高清av| 国产精品乱码妇女bbbb| 在线精品视频一区二区三四| 亚洲欧美综合v| 一区二区三区日韩欧美精品| 久久亚洲影音av资源网| 国产精品久久久久久久免费软件| 亚洲成人资源| 欧美一区二区三区免费看| 在线视频日本亚洲性| 久久精品五月| 亚洲欧美中文在线视频| 欧美精品v日韩精品v韩国精品v| 国产午夜精品麻豆| 在线视频欧美精品| 99视频在线观看一区三区| 久久久久久亚洲精品中文字幕| 国产精品高清在线观看| 91久久线看在观草草青青| 久久国内精品自在自线400部| 午夜精品久久久久久久蜜桃app| 欧美极品aⅴ影院| 伊人影院久久| 久久9热精品视频| 欧美一级视频精品观看| 欧美日韩在线免费| 亚洲欧洲一区二区天堂久久| 亚洲国产精品第一区二区三区 | 久久国产精品黑丝| 欧美私人网站| 日韩视频在线免费| 亚洲免费成人av电影| 欧美成人亚洲成人日韩成人| 狠狠色综合一区二区| 性色av一区二区三区| 亚洲欧美日韩精品| 欧美午夜精品电影| 日韩午夜中文字幕| 99精品热6080yy久久| 欧美第一黄色网| 亚洲盗摄视频| 亚洲精品激情| 欧美国产日韩视频| 亚洲黄色在线看| 亚洲美洲欧洲综合国产一区| 欧美ed2k| 亚洲第一二三四五区| 亚洲欧洲日本国产| 你懂的成人av| 亚洲黄一区二区| 99精品黄色片免费大全| 欧美精选午夜久久久乱码6080| 亚洲国产高清高潮精品美女| 亚洲激情女人| 欧美激情一区二区三区 | 亚洲国产欧美日韩| 裸体歌舞表演一区二区| 在线精品观看| 亚洲精品乱码久久久久久蜜桃91| 欧美大片在线影院| 亚洲九九爱视频| 亚洲一区bb| 国产精品永久免费视频| 亚洲综合不卡| 久久九九热免费视频| 狠狠色狠狠色综合人人| 亚洲激情一区二区三区| 欧美国产日韩精品免费观看| 亚洲精选大片| 亚洲欧美日韩人成在线播放| 国产伦精品一区二区三区免费| 欧美一区二区三区久久精品茉莉花| 久久婷婷丁香| 亚洲国产精品久久久久久女王 | 亚洲免费在线视频| 国产日韩精品综合网站| 久久国产主播精品| 欧美激情中文字幕乱码免费| 日韩午夜视频在线观看| 欧美一级一区| 一区二区视频免费在线观看 | 欧美日韩日韩| 亚洲一区二区精品视频| 久久久久综合一区二区三区| 亚洲国产精品毛片| 亚洲欧美精品伊人久久| 国内精品久久久久久久影视蜜臀 | 美女视频网站黄色亚洲| 亚洲精品美女在线观看| 亚洲男人第一av网站| 国内揄拍国内精品久久| 亚洲精品在线视频观看| 国产精品不卡在线| 久久不见久久见免费视频1| 欧美激情综合网| 亚洲欧美资源在线| 欧美人与禽性xxxxx杂性| 亚洲性夜色噜噜噜7777| 美女诱惑一区| 一区二区三区黄色| 老司机久久99久久精品播放免费 | 免费在线看一区| 一区二区三区回区在观看免费视频| 久久国产加勒比精品无码| 亚洲欧洲精品一区二区三区| 午夜精品久久久久久久99樱桃| 黄色综合网站| 亚洲男女自偷自拍| 亚洲第一黄网| 欧美一区二区三区男人的天堂| 亚洲国产欧洲综合997久久| 香蕉乱码成人久久天堂爱免费| 在线电影一区| 性伦欧美刺激片在线观看| 亚洲电影免费观看高清完整版在线| 亚洲在线观看免费视频| 又紧又大又爽精品一区二区| 亚洲综合99| 亚洲激情午夜| 久久久噜噜噜久噜久久 | 国产精品一区二区a| 99精品黄色片免费大全| 国内精品免费在线观看| 亚洲一区在线观看视频 | 中国成人亚色综合网站| 久久午夜羞羞影院免费观看| 亚洲特黄一级片| 欧美精品在线观看91| 亚洲第一网站免费视频| 国产精品一区一区| 亚洲婷婷在线|