《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于案例推理的認(rèn)知自學(xué)習(xí)引擎
基于案例推理的認(rèn)知自學(xué)習(xí)引擎
來(lái)源:電子技術(shù)應(yīng)用2011年第12期
劉怡靜1,2, 汪李峰2, 魏勝群2
(1. 解放軍理工大學(xué) 通信工程學(xué)院 研究生管理大隊(duì)四隊(duì), 江蘇 南京210007;2. 中國(guó)電子系
摘要: 認(rèn)知無(wú)線電與傳統(tǒng)無(wú)線電的最大區(qū)別在于其能夠感知環(huán)境,主動(dòng)去學(xué)習(xí)、適應(yīng)環(huán)境。近年來(lái),對(duì)于認(rèn)知無(wú)線電的研究主要集中于多目標(biāo)優(yōu)化的配置決策問(wèn)題。但實(shí)際的通信系統(tǒng)可觀測(cè)到的環(huán)境參數(shù)有限,且輸入輸出關(guān)系復(fù)雜,需要認(rèn)知無(wú)線電通過(guò)學(xué)習(xí)來(lái)理解并適應(yīng)環(huán)境。針對(duì)上述問(wèn)題,提出了一種基于案例推理和模擬退火思想的認(rèn)知決策引擎算法。仿真結(jié)果表明,該算法具有增量自學(xué)習(xí)、多目標(biāo)適用性、快速收斂等優(yōu)點(diǎn)。
中圖分類號(hào): TP23
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2011)12-0076-04
Cell gesture recognition based on inertial sensors
Liu Yu, Yang Ping, Duan Bingtao
School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731,China
Abstract: With gesture input, cell phones can be much more functional, convenience and funny. The core of this input way is recognizing the current gesture quickly and accurately. A method of recognize the gesture based on inertial sensors is tested in this paper, and it is proved useful.
Key words : inertial sensors; human-machine interaction; gesture recognition; fusion algorithm


    基于案例推理CBR(Case-Based Reasoning)借鑒人類處理問(wèn)題的方式,運(yùn)用以前積累的知識(shí)和經(jīng)驗(yàn)直接解決問(wèn)題。由于CBR具備自主學(xué)習(xí)功能,不要求決策主體掌握豐富領(lǐng)域知識(shí)或精確的數(shù)學(xué)模型,僅僅通過(guò)簡(jiǎn)單的案例記憶就能實(shí)現(xiàn)出色的增量學(xué)習(xí)和自我提升,因而引起相關(guān)專家和學(xué)者的關(guān)注,逐漸成為人工智能領(lǐng)域的一個(gè)研究熱點(diǎn)。
 認(rèn)知無(wú)線電技術(shù)作為無(wú)線通信領(lǐng)域與人工智能領(lǐng)域相結(jié)合的產(chǎn)物[1],近年來(lái)受到極大關(guān)注。認(rèn)知決策引擎是認(rèn)知無(wú)線電CR(Cognitive Radio)實(shí)現(xiàn)其智能的核心功能模塊,決策引擎以CR觀察到的外界無(wú)線環(huán)境、CR自身狀態(tài)和用戶需求信息為輸入,對(duì)目標(biāo)和情境進(jìn)行分析,根據(jù)已有知識(shí)進(jìn)行推理、決策,輸出達(dá)到用戶需求的優(yōu)化配置,同時(shí)能夠?qū)W習(xí)不同配置在新環(huán)境下的效用,從而豐富系統(tǒng)知識(shí),以適應(yīng)環(huán)境和需求的變化[2]。
 當(dāng)認(rèn)知無(wú)線電可以通過(guò)觀察獲得需要的所有環(huán)境知識(shí)(表示為c),且用戶需求u與環(huán)境c和配置d之間的定量關(guān)系u=f(c,d)已知時(shí),將認(rèn)知決策的過(guò)程建模為一個(gè)優(yōu)化問(wèn)題[3],即在給定的環(huán)境c下,尋找最優(yōu)配置決策d,使性能u最大(或?qū)ふ夷硞€(gè)配置決策d,使性能u得到滿足)的情況。參考文獻(xiàn)[4]使用遺傳算法對(duì)CR中多目標(biāo)優(yōu)化問(wèn)題進(jìn)行了研究,參考文獻(xiàn)[5]將粒子群優(yōu)化算法應(yīng)用在認(rèn)知引擎的決策問(wèn)題中,參考文獻(xiàn)[6]考慮遺傳算法中參數(shù)敏感度對(duì)不同目標(biāo)的影響,進(jìn)一步提升了優(yōu)化效率。然而,在實(shí)際應(yīng)用中,CR可直接觀測(cè)得到的環(huán)境參數(shù)有限(比如信道統(tǒng)計(jì)特性等無(wú)法直接觀測(cè)得到),且系統(tǒng)可能面臨各種不同的傳播環(huán)境、動(dòng)態(tài)接入不同頻段的信道,輸入c和u與輸出d的關(guān)系很復(fù)雜,函數(shù)f無(wú)法事先確知。此時(shí),認(rèn)知無(wú)線電需要通過(guò)不斷地學(xué)習(xí)來(lái)理解并適應(yīng)環(huán)境。目前,針對(duì)環(huán)境部分可觀測(cè)、精確函數(shù)f未知下的認(rèn)知決策系統(tǒng)研究才剛起步,參考文獻(xiàn)[3]簡(jiǎn)單舉例說(shuō)明了學(xué)習(xí)在解決這類問(wèn)題當(dāng)中的關(guān)鍵作用,但尚未有相關(guān)系統(tǒng)的研究成果出現(xiàn)。
 本文針對(duì)這類問(wèn)題,研究基于案例的推理決策問(wèn)題,提出基于案例庫(kù)的認(rèn)知決策引擎。文中所提決策框架具有自學(xué)習(xí)、多狀態(tài)多目標(biāo)通用性強(qiáng)、快速收斂等特點(diǎn)。
1 CBR簡(jiǎn)介
 基于案例的推理模仿人類的思維方式,直接援引以前積累的經(jīng)驗(yàn)和知識(shí)解決現(xiàn)在的問(wèn)題,同時(shí)將當(dāng)前問(wèn)題及解決結(jié)果補(bǔ)充為新知識(shí),從而實(shí)現(xiàn)自主學(xué)習(xí)和增量學(xué)習(xí)。
 通常,CBR系統(tǒng)的運(yùn)作過(guò)程可以概括為“4Rs”(如圖1所示):

 (1)檢索(Retrieve):分析當(dāng)前面臨的新問(wèn)題,定義新問(wèn)題的特征或?qū)傩裕诎咐龓?kù)中尋找對(duì)解決當(dāng)前問(wèn)題有最大潛在啟發(fā)價(jià)值的舊案例;
 (2)重用(Reuse):以相似案例為基礎(chǔ),通過(guò)自適應(yīng)的調(diào)整,構(gòu)造新問(wèn)題的解決策略;
 (3)修訂(Revise):執(zhí)行并驗(yàn)證當(dāng)前策略;
 (4)存儲(chǔ)(Retain):將有參考價(jià)值的經(jīng)驗(yàn)案例存儲(chǔ)到案例庫(kù)中。
    其中,檢索和重用屬于推理階段,修訂和存儲(chǔ)屬于學(xué)習(xí)階段,學(xué)習(xí)的過(guò)程將以往的決策經(jīng)驗(yàn)以案例的形式進(jìn)行積累,使系統(tǒng)知識(shí)不斷豐富,以提高未來(lái)推理的效能,從而在面對(duì)新問(wèn)題時(shí)能夠做出更好的決策。
2 基于CBR與模擬退火的自學(xué)習(xí)認(rèn)知決策算法
 認(rèn)知引擎的輸入變量包括用戶的目標(biāo)需求、觀測(cè)到的無(wú)線環(huán)境變量以及CR自身狀態(tài),三者共同影響認(rèn)知引擎的配置決策。為了使CR通信案例庫(kù)具有廣泛的可借鑒性,為不同目標(biāo)、不同狀態(tài)的CR決策提供參考,構(gòu)建如表1所示案例庫(kù)。其中條件屬性包括觀測(cè)的無(wú)線環(huán)境特征和自身狀態(tài)(如當(dāng)前信道是否空閑、最大發(fā)射功率、可選的調(diào)制編碼方式等),用于描述問(wèn)題發(fā)生的場(chǎng)景或情境。決策屬性為CR所作的一些反應(yīng),包括信道、發(fā)射功率、調(diào)制方式、編碼方式、數(shù)據(jù)包長(zhǎng)等配置參數(shù)。結(jié)果為在不同條件屬性下,相應(yīng)配置所帶來(lái)的不同目標(biāo)的實(shí)際性能,如誤比特率、吞吐量、頻譜效率、存活時(shí)間等。



 


出,算法具有快速收斂性(決策100次左右,算法已經(jīng)能夠獲取可觀的性能),且退火系數(shù)越小,溫度下降越快,收斂也越快,但過(guò)快收斂的代價(jià)是性能次優(yōu);而反之,過(guò)大的退火系數(shù)能夠帶來(lái)更優(yōu)的吞吐量,然而收斂速度相對(duì)較慢。在接下來(lái)的仿真中,取λ=0.5。
    為驗(yàn)證本算法對(duì)于不同通信目標(biāo)的廣泛通用性,考慮兩種典型通信目標(biāo)。目標(biāo)1:最大化系統(tǒng)吞吐量;目標(biāo)2:在保證系統(tǒng)吞吐量大于4 Mb/s前提下,最大化頻譜能效。仿真結(jié)果如圖3所示。對(duì)于通信目標(biāo)1,隨著案例經(jīng)驗(yàn)的累積,其學(xué)到的知識(shí)也日益豐富,因而系統(tǒng)吞吐量性能越來(lái)越好(如圖3左上所示),但其頻譜效能并未得到提高(圖3左下)。對(duì)于通信目標(biāo)2,在配置決策滿足吞吐量的目標(biāo)要求下(圖3右上),系統(tǒng)的頻譜效能隨著決策的進(jìn)行逐漸提高(圖3右下)。仿真結(jié)果表明本算法可以滿足不同的目標(biāo)需求。

    圖4為功率參數(shù)調(diào)整曲線。如圖,當(dāng)通信目標(biāo)為最大化用戶吞吐量時(shí),盡管系統(tǒng)不知道功率越大則吞吐量越大的這種先驗(yàn)知識(shí),但是通過(guò)不斷學(xué)習(xí),系統(tǒng)不斷調(diào)整其發(fā)射功率,使其逼近于最大發(fā)射功率23 dBm。另一方面,對(duì)于最大化頻譜能效的用戶而言,功率將被調(diào)整到一個(gè)適合的大小。

     圖5和圖6分別統(tǒng)計(jì)了兩種目標(biāo)下,不同信道和不同調(diào)制方式被應(yīng)用的概率。針對(duì)通信目標(biāo)1,CR首選信道5并采用16QAM的調(diào)制方式(5信道帶寬大且傳播損耗相對(duì)較小),而針對(duì)目標(biāo)2,CR首選信道傳播損耗最小的信道6,并應(yīng)用調(diào)制階數(shù)最高的64QAM調(diào)制方式。

    本文針對(duì)認(rèn)知無(wú)線電中環(huán)境部分可觀測(cè),信道統(tǒng)計(jì)信息先驗(yàn)未知,且系統(tǒng)的目標(biāo)、環(huán)境與配置間的關(guān)系不明確,需要通過(guò)學(xué)習(xí)進(jìn)行配置決策的問(wèn)題,提出了一種基于案例推理和模擬退火思想的認(rèn)知決策引擎算法,理論分析和仿真結(jié)果表明,該算法具有增量自學(xué)習(xí)、多目標(biāo)適用性、快速收斂等優(yōu)點(diǎn)。案例庫(kù)有廣泛借鑒性,可實(shí)現(xiàn)在不同節(jié)點(diǎn)間相互學(xué)習(xí)的功能,下一步可研究關(guān)于多節(jié)點(diǎn)合作的學(xué)習(xí)引擎的實(shí)現(xiàn)方法,如何應(yīng)用數(shù)據(jù)挖掘的方法從案例庫(kù)中提取出有用知識(shí)的問(wèn)題也有待進(jìn)一步研究。
參考文獻(xiàn)
[1] MITOLA J. Cognitive radio-making software radios  more personal[J]. IEEE Personal Communications, 1999,6(4):13-18.
[2] 汪李峰,魏勝群.認(rèn)知引擎技術(shù)[J].中興通信技術(shù),2009,15(04):05-09.
[3] CLANCY C,HECKER J,et al.Application of machine  learning to cognitive radio networks[J].IEEE Wireless Communications, 2007,14(4):47-52.
[4] RIESER C J. Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D]. Blacksburg,VA,USA:Virginia Polytechnic Institute and State University, 2004.
[5] 趙知?jiǎng)牛焓烙睿嵤随?等.基于二進(jìn)制粒子群算法的認(rèn)知無(wú)線電決策引擎[J].物理學(xué)報(bào), 2009,58(7):5118-5125.
[6] NEWMAN T R, EVANS J B. Parameter sensitivity in cognitive radio adaptation engines[C]. New Frontiers in  Dynamic Spectrum Access Networks, DySPAN 2008, 3st IEEE International Symposium on, Chicago, IL(2008-01-05.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
欧美特黄一级| 亚洲第一久久影院| 亚洲一级黄色片| 一区二区三区免费看| 午夜精品999| 亚洲一区二区三区免费观看| 日韩视频在线免费观看| 亚洲精品乱码视频| 亚洲人妖在线| 亚洲美女在线国产| 夜夜爽夜夜爽精品视频| 亚洲欧洲日韩在线| 亚洲精品午夜| 一本色道久久99精品综合| 日韩天堂在线观看| 在线亚洲电影| 亚洲一区二区伦理| 亚洲综合首页| 欧美一区二区免费视频| 亚洲欧美日本在线| 亚洲欧洲av一区二区| 欧美在线国产精品| 亚洲大胆人体在线| 亚洲国产精品美女| 亚洲精品在线二区| 宅男精品视频| 亚洲欧美成人一区二区三区| 亚洲免费在线视频一区 二区| 午夜一区在线| 久久久久9999亚洲精品| 久久欧美中文字幕| 欧美成人免费视频| 欧美日本韩国在线| 国产精品国产亚洲精品看不卡15| 国产精品黄色| 国产一区二区精品在线观看| 极品少妇一区二区三区精品视频| 影音先锋亚洲一区| 亚洲激情影院| 亚洲视频一起| 欧美专区在线观看一区| 亚洲精品日韩在线观看| 亚洲最新中文字幕| 午夜一区二区三视频在线观看 | 欧美顶级艳妇交换群宴| 欧美日韩国产成人| 国产精品日韩精品| 一区视频在线| 夜夜嗨av一区二区三区网页| 午夜精品国产更新| 亚洲国产高清自拍| 亚洲一区国产一区| 久久久精品一区| 欧美久久电影| 国产欧美日韩在线视频| 亚洲电影免费| 亚洲欧美区自拍先锋| 亚洲人成久久| 午夜精品免费| 欧美国产日韩免费| 国产女主播一区二区三区| 亚洲成人在线观看视频| 亚洲一区二区av电影| 91久久极品少妇xxxxⅹ软件| 亚洲小视频在线观看| 久久久久久9| 欧美天天在线| 樱桃国产成人精品视频| 亚洲婷婷免费| 亚洲精品中文字幕女同| 久久不射电影网| 欧美日韩免费观看一区=区三区 | av不卡在线看| 亚洲国产另类久久久精品极度| 亚洲伊人伊色伊影伊综合网| 美女诱惑一区| 国产女主播一区| 99精品视频免费在线观看| 亚洲第一久久影院| 亚洲免费视频成人| 欧美激情视频免费观看| 国产午夜一区二区三区| 一区二区免费在线观看| 91久久精品日日躁夜夜躁欧美 | 欧美一区二区三区视频免费播放| 9l视频自拍蝌蚪9l视频成人| 久久久久九九视频| 国产精品大全| 亚洲精品欧美专区| 亚洲国产精品专区久久| 欧美在线免费看| 国产精品ⅴa在线观看h| 亚洲国产精品久久久久秋霞蜜臀| 欧美在线免费一级片| 午夜激情综合网| 欧美日韩一区二区三区在线| 亚洲大胆女人| 久久国产精品毛片| 欧美伊人久久久久久久久影院| 欧美日韩视频在线第一区| 亚洲国产成人在线播放| 亚洲第一免费播放区| 久久精品夜色噜噜亚洲a∨| 国产精品高潮粉嫩av| 亚洲免费观看视频| 日韩亚洲视频| 欧美高清视频www夜色资源网| 国产专区精品视频| 午夜精品久久久久久久白皮肤| 亚洲自拍偷拍一区| 国产精品成人播放| 夜夜嗨av一区二区三区四区| 一本一本久久a久久精品综合妖精| 欧美www视频| 亚洲丶国产丶欧美一区二区三区| 久久国产精品一区二区三区| 久久久av网站| 国产一级揄自揄精品视频| 亚洲欧美一区在线| 久久精品理论片| 国产在线观看一区| 欧美一级理论性理论a| 欧美一级大片在线免费观看| 国产精品视频内| 亚洲综合成人在线| 欧美亚洲日本国产| 国产乱子伦一区二区三区国色天香| 亚洲一区二区久久| 欧美一区二区在线看| 国产亚洲精品aa| 欧美在线91| 你懂的国产精品永久在线| 亚洲国产精彩中文乱码av在线播放| 亚洲国产精品电影| 欧美搞黄网站| 一本久久a久久免费精品不卡| 一区二区国产精品| 欧美午夜视频在线| 午夜国产精品视频| 久久综合伊人| 亚洲欧洲综合另类| 亚洲一区二区三区四区视频| 国产精品久99| 欧美一二三区精品| 免费中文日韩| 99精品热视频只有精品10| 亚洲欧美日韩精品一区二区| 国产精品一区二区你懂得| 欧美一区成人| 欧美大片国产精品| 99re在线精品| 久久国产乱子精品免费女| 精品不卡一区| aaa亚洲精品一二三区| 国产精品久久99| 久久成人精品电影| 欧美精品午夜| 亚洲一区精彩视频| 久久在线播放| 99在线精品观看| 久久国产精品久久w女人spa| 在线精品观看| 亚洲欧美精品一区| 韩国av一区| 亚洲午夜一区二区三区| 国产日韩欧美亚洲一区| 亚洲欧洲日本国产| 国产精品啊v在线| 久久精品国产亚洲精品| 欧美日韩国产精品| 欧美一区二区精品久久911| 欧美激情国产精品| 亚洲欧美成人网| 欧美精品v国产精品v日韩精品| 亚洲视频1区2区| 美国十次了思思久久精品导航| 亚洲精选中文字幕| 久久男女视频| 亚洲性图久久| 欧美韩日精品| 午夜亚洲性色视频| 欧美精品一区二区三区蜜桃| 午夜精品久久久久久久99热浪潮| 欧美韩日一区| 欧美在线视频免费| 欧美三级资源在线| 欧美专区第一页| 国产精品久久久久aaaa| 亚洲日本va午夜在线影院| 国产免费成人在线视频| 99精品视频免费观看视频| 国产无一区二区| 亚洲一区日韩在线| **性色生活片久久毛片| 午夜精品影院在线观看| 亚洲人成久久| 另类人畜视频在线| 午夜免费电影一区在线观看| 欧美日韩国产首页在线观看| 欧美在线看片a免费观看|