《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 業(yè)界動(dòng)態(tài) > 基于PSO的BP網(wǎng)絡(luò)在蘋果顏色分級(jí)中的應(yīng)用

基于PSO的BP網(wǎng)絡(luò)在蘋果顏色分級(jí)中的應(yīng)用

2009-09-29
作者:薄麗麗1,付主木1,梁坤峰2

  摘 要: 為了克服蘋果顏色分級(jí)中存在的誤差大、準(zhǔn)確率低等缺點(diǎn),利用粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法,實(shí)現(xiàn)蘋果顏色的實(shí)時(shí)分級(jí)。該算法可優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值,提取蘋果顏色特征作為BP神經(jīng)網(wǎng)絡(luò)的輸入,將訓(xùn)練優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)做為分級(jí)器,對(duì)蘋果按照顏色進(jìn)行分級(jí)。實(shí)驗(yàn)結(jié)果表明,該方法分級(jí)正確率不低于96%,對(duì)一個(gè)蘋果的檢測(cè)時(shí)間在0.1ms~0.2ms之間,滿足實(shí)時(shí)性要求。
  關(guān)鍵詞: 粒子群優(yōu)化算法;BP神經(jīng)網(wǎng)絡(luò);顏色分級(jí);分級(jí)器

?

  顏色和著色面積是衡量蘋果外觀品質(zhì)的重要指標(biāo),高品質(zhì)的蘋果著色均勻,有較高的商品價(jià)值,并且蘋果的表面色調(diào)也間接反映了其成熟度和內(nèi)部品質(zhì)。國(guó)外研究者在蘋果的顏色檢測(cè)方面做了大量的研究,如Tao等[1]利用基于色度特征的統(tǒng)計(jì)識(shí)別算法完成了蘋果、土豆的顏色分級(jí),該統(tǒng)計(jì)識(shí)別算法需要通過(guò)大量的樣本才能得出統(tǒng)計(jì)規(guī)律,因此該方法存在過(guò)程復(fù)雜、效率低的不足;Kavdir等[2]使用BP神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)蘋果分類器,用樣本圖像訓(xùn)練分級(jí)器,實(shí)現(xiàn)蘋果分級(jí),但該方法神經(jīng)網(wǎng)絡(luò)中的BP算法存在收斂速度慢和易陷入局部極值點(diǎn)等缺陷。在國(guó)內(nèi),參考文獻(xiàn)[3]和參考文獻(xiàn)[4]分別利用遺傳神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)理論實(shí)現(xiàn)蘋果顏色分級(jí)。雖然前人取得了一定成果,但由于我國(guó)硬件設(shè)施的落后,蘋果顏色分級(jí)在實(shí)驗(yàn)研究過(guò)程中仍存在分級(jí)過(guò)程復(fù)雜、效率低等缺點(diǎn),不易實(shí)現(xiàn)自動(dòng)化分級(jí)和滿足分級(jí)的實(shí)時(shí)性要求。因此,本文提出了一種基于粒子群優(yōu)化算法PSO(Particle Swarm Optimization)的BP神經(jīng)網(wǎng)絡(luò)分級(jí)方法,利用PSO算法優(yōu)化BP網(wǎng)絡(luò)參數(shù),可以避免BP算法收斂速度慢和易陷入局部極值點(diǎn)等缺陷,通過(guò)提取蘋果顏色特征參數(shù),將該參數(shù)作為BP網(wǎng)絡(luò)輸入,訓(xùn)練優(yōu)化后的BP網(wǎng)絡(luò)作為分級(jí)器,提高蘋果顏色分級(jí)效率。
1 蘋果顏色特征提取
1.1? 采集蘋果圖像

  本文選取紅富士蘋果作為樣本,以黑色為背景,便于提取目標(biāo)圖像,用CCD拍攝一個(gè)蘋果的3個(gè)不同側(cè)面,可覆蓋蘋果大部分表面。拍攝的圖像如圖1所示。
???????????????????????????

?

1.2? 選取顏色模型與提取顏色特征
1.2.1? 選取顏色模型
  顏色是人眼對(duì)不同頻率的電磁波的一種感知形式,由物體的反射光特性和表面的物理、化學(xué)特性決定,據(jù)此建立顏色模型。對(duì)顏色進(jìn)行描述和評(píng)價(jià)的兩種最常用顏色模型是RGB顏色模型和HIS顏色填型。
  (1)RGB顏色模型
  RGB是一個(gè)加色立方體模型,光源的亮度、色度、純度混合在R、G、B 3個(gè)參數(shù)中,RGB里面任意色光都可以用R、G、B三色不同分量相加混合而成,該模型通常用于彩色監(jiān)視器和一大類彩色視頻攝像機(jī)。人眼不能直接感覺(jué)R、G、B三色的比例,只能通過(guò)感知顏色的亮度、色調(diào)以及飽和度區(qū)分物體,因此,僅使用RGB顏色模型難以對(duì)圖像進(jìn)行直接處理。
  (2)HIS顏色模型
  HIS顏色模型定義了色調(diào)(H)、亮度(I)和飽和度(S)3個(gè)互不相關(guān)、容易預(yù)測(cè)的顏色屬性,其中H是表面呈現(xiàn)近似紅、黃、綠、藍(lán)等顏色的一種或幾種的目視感知屬性;I表示物體表面的強(qiáng)度或亮度;S是顏色具有白光的程度。該模型與人眼感覺(jué)顏色的原理相似,更符合人描述和解釋顏色的方式。為了準(zhǔn)確分析蘋果表面顏色特性,本文選用HIS模型。從RGB模型到HIS模型轉(zhuǎn)化公式如(1)、(2)和(3)所示 [5]。
  

1.2.2? 提取顏色特征
  由于在HIS顏色模型中的H分量在色彩上有較好的分類性,反映了蘋果由紅到綠的彩色特征變化,相比RGB顏色模型,其計(jì)算量減少了2/3,利于實(shí)時(shí)在線分級(jí),因此該顏色模型對(duì)彩色的識(shí)別可使用H分量。確定色度H值如公式 (4)。
  
  為了反映蘋果表面顏色的組成情況,可由色度值得到彩色圖像的色度直方圖,然后根據(jù)直方圖的色度曲線提取蘋果色度特征參數(shù)。為分析不同等級(jí)蘋果表面紅區(qū)比例,依國(guó)際分級(jí)標(biāo)準(zhǔn),將其分為4個(gè)等級(jí),即優(yōu)等、一等、二等和等外。求出各級(jí)蘋果色度值范圍,得到其對(duì)應(yīng)的色度直方圖,具體步驟如下:
  (1)用閾值法進(jìn)行圖像分割,提取蘋果目標(biāo)圖像,得到蘋果RGB圖像;
  (2)應(yīng)用公式(1)、(2)、(3)將蘋果顏色的RGB模型轉(zhuǎn)化為HIS模型;
  (3)利用公式(4)計(jì)算各像素的色度值,得到色度直方圖。
  由各等級(jí)蘋果的直方圖可知,蘋果色度范圍分布在0°~100°:優(yōu)等紅富士蘋果色度值集中在0°~25°;一等紅富士蘋果色度值集中在15°~45°;二等紅富士蘋果色度值集中在30°~65°,且分布比較分散;等外紅富士蘋果色度值集中在60°~80°。按照每隔20°為一子區(qū)間進(jìn)行劃分,分別有5個(gè)點(diǎn)組成色度區(qū)域。各等級(jí)蘋果如圖2所示,色度直方圖曲線如圖3所示。

?

?

  圖3中橫坐標(biāo)是色相范圍0°~100°,縱坐標(biāo)是各色相值下的頻度,選用每個(gè)蘋果的色相頻度作為顏色分級(jí)特征參數(shù)。將該參數(shù)作為BP網(wǎng)絡(luò)的輸入,用PSO優(yōu)化后的BP網(wǎng)絡(luò)作為分級(jí)器,實(shí)現(xiàn)蘋果顏色分級(jí)。
2?PSO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法
2.1?PSO和BP神經(jīng)網(wǎng)絡(luò)
  粒子群算法是基于群體的演化算法,由Kennedv和 Eberhart于1995年提出,該算法的基本思想源于對(duì)鳥群捕食的模擬,進(jìn)而演化成隨機(jī)化搜索最優(yōu)解的方法。在PSO算法中,通過(guò)初始化一群隨機(jī)粒子,用迭代找到最優(yōu)解。在每次迭代中,粒子通過(guò)跟蹤兩個(gè)極值更新自己,一個(gè)是粒子本身所找到的最優(yōu)解,稱為個(gè)體極值Pbest;另一個(gè)極值是整個(gè)種群目前找到的最優(yōu)解,為全局極值gbest。粒子主要由以下公式更新自己的速度和位置[6]:
 

?

  其中,xid是粒子的當(dāng)前位置;vid是粒子的速度;w是慣性權(quán)重;rand1( )、rand2( )是在[0,1]區(qū)間內(nèi)均勻分布的隨機(jī)數(shù);c1和c2為加速系數(shù),且取大于零的常數(shù)。PSO算法具有概念簡(jiǎn)單,容易實(shí)現(xiàn),搜索速度快,搜索范圍大等優(yōu)點(diǎn)。而BP神經(jīng)網(wǎng)絡(luò)一般為多層神經(jīng)網(wǎng)絡(luò),是一種多層前饋神經(jīng)網(wǎng)絡(luò)。 BP網(wǎng)絡(luò)模型一般有輸入層、隱含層和輸出層,相鄰神經(jīng)元之間實(shí)現(xiàn)全連接,而每層各神經(jīng)元之間無(wú)連接。傳統(tǒng)BP訓(xùn)練算法收斂速度慢,易陷于局部極小,難以收斂到全局最優(yōu)點(diǎn),學(xué)習(xí)過(guò)程常發(fā)生振蕩,訓(xùn)練過(guò)程中學(xué)習(xí)新樣本時(shí)有適配問(wèn)題。為了解決BP神經(jīng)網(wǎng)絡(luò)中的不足,本文利用PSO的優(yōu)點(diǎn)優(yōu)化BP神經(jīng)網(wǎng)絡(luò)參數(shù),且利用PSO的收斂性使所求問(wèn)題能夠以較大概率收斂到全局最優(yōu)解或次優(yōu)解,很好地解決BP網(wǎng)絡(luò)存在的局部收斂性問(wèn)題,提高BP網(wǎng)絡(luò)分級(jí)準(zhǔn)確度。
2.2? PSO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法
  直接用BP網(wǎng)絡(luò)設(shè)計(jì)蘋果分級(jí)器,分級(jí)速度慢,準(zhǔn)確度低,因此本文引入PSO優(yōu)化BP網(wǎng)絡(luò)參數(shù),避免BP網(wǎng)絡(luò)訓(xùn)練時(shí)陷入局部最小問(wèn)題,并提高BP網(wǎng)絡(luò)訓(xùn)練速度,從而提高分級(jí)速度和準(zhǔn)確度。
  在PSO優(yōu)化BP網(wǎng)絡(luò)算法中,用表示一組參數(shù)值向量,該向量中的每一維表示權(quán)值和閾值,d為BP網(wǎng)絡(luò)中每一維的權(quán)值和閾值個(gè)數(shù),BP神經(jīng)網(wǎng)絡(luò)中的所有權(quán)值和閾值個(gè)數(shù)是74個(gè),其中權(quán)值個(gè)數(shù)為63個(gè),閾值個(gè)數(shù)為11個(gè)。粒子的適應(yīng)值計(jì)算如公式(7)[8]:
  

式中,m是訓(xùn)練樣本,值為100;n是BP網(wǎng)絡(luò)輸出層個(gè)數(shù),值為4;Yij為數(shù)組(0,1,2,3),其中數(shù)組中0、1、2和3分別表示優(yōu)等、一等、二等和等外4個(gè)等級(jí),即理想輸出值;通過(guò)訓(xùn)練優(yōu)化后的BP網(wǎng)絡(luò)得到實(shí)際輸出值即yij,值為(1.6247e-021,1,2,3)。通過(guò)公式(7)計(jì)算出粒子適應(yīng)值進(jìn)行迭代,直到全局搜索完成。在PSO算法實(shí)現(xiàn)過(guò)程中,根據(jù)評(píng)價(jià)網(wǎng)絡(luò)性能標(biāo)準(zhǔn)不斷提高BP網(wǎng)絡(luò)性能,評(píng)價(jià)網(wǎng)絡(luò)性能公式為(8):
  
  式中iter是算法當(dāng)前迭代次數(shù),是第i次粒子迭代全局最優(yōu)值的適應(yīng)度。其算法流程如圖4所示。

?

其中l(wèi)、q、k是設(shè)定BP網(wǎng)絡(luò)輸入層、隱含層、輸出層的個(gè)數(shù),其值如圖5所示。


????????????????
3? 仿真結(jié)果
  訓(xùn)練優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)作為分級(jí)器,實(shí)現(xiàn)蘋果顏色的分級(jí)。BP網(wǎng)絡(luò)輸入層是蘋果顏色特征參數(shù)的色相頻度,共l個(gè)節(jié)點(diǎn),值為5,分別對(duì)應(yīng)5個(gè)色相頻度域,即0~0.02、0.02~0.04、0.04~0.06、0.06~0.08和0.08~0.1。確定隱含層節(jié)點(diǎn)數(shù)只能憑經(jīng)驗(yàn)估計(jì),在100個(gè)訓(xùn)練樣本下,隱含層節(jié)點(diǎn)數(shù)取為7,即q值為7;輸出層為k個(gè)節(jié)點(diǎn),值為4,分別對(duì)應(yīng)4個(gè)分類等級(jí)。隱含層傳遞函數(shù)為正切S型函數(shù),輸出層傳遞函數(shù)是線性函數(shù),訓(xùn)練好優(yōu)化后的BP網(wǎng)絡(luò)結(jié)構(gòu)為圖5中的5-7-4型,對(duì)應(yīng)的訓(xùn)練誤差曲線圖如圖6所示。???


  從圖6可知BP網(wǎng)絡(luò)訓(xùn)練誤差是2.428 6e-031,在PSO優(yōu)化BP網(wǎng)絡(luò)算法誤差范圍(0.009~0.056)之間,則可用該訓(xùn)練好的BP網(wǎng)絡(luò)分級(jí)器進(jìn)行蘋果顏色分級(jí)。選取各等級(jí)紅富士蘋果各10個(gè),共40個(gè)蘋果,采集蘋果圖像作為樣本,仿真結(jié)果如表1所示。表中BP算法誤差是直接使用BP網(wǎng)絡(luò)實(shí)現(xiàn)分級(jí)存在的誤差,而PSO優(yōu)化BP網(wǎng)絡(luò)算法誤差表示用優(yōu)化后的BP網(wǎng)絡(luò)進(jìn)行分級(jí)存在的誤差。

?

?

  提取蘋果顏色特征信息,利用PSO的全局搜索、計(jì)算復(fù)雜度低、減少實(shí)驗(yàn)次數(shù)的能力優(yōu)化BP網(wǎng)絡(luò)的參數(shù),避免了BP算法陷入局部最小值。然后用訓(xùn)練優(yōu)化后的BP網(wǎng)絡(luò)作為分級(jí)器,實(shí)現(xiàn)蘋果顏色分級(jí)。實(shí)驗(yàn)結(jié)果表明該算法分級(jí)準(zhǔn)確率不低于96%,識(shí)別一個(gè)蘋果的平均時(shí)間為0.1 ms~0.2 ms之間,滿足實(shí)時(shí)分級(jí)的要求。
參考文獻(xiàn)
[1] ?TAO Y, HEINEMANN P H, ZETAL V. Machine vision for color inspection of potatoes and apples [J]. Transaction of the ASAE, 1995, 38(5): 1554-1561.
[2] ? NAKANO K. Application of BP neural networks to the color grading of apples [J]. Computer Electron.Agric, 1996, 17: 103-115.
[3]? 李慶中,張漫,汪懋華. 基于遺傳神經(jīng)網(wǎng)絡(luò)的蘋果顏色實(shí)時(shí)分級(jí)方法[J]. 中國(guó)圖形圖像學(xué)報(bào), 2000, 5 (9): 779-783.
[4] ?袁金麗,郭志濤,武睿,等. 基于支持向量基的蘋果顏色分級(jí)[J]. 農(nóng)業(yè)網(wǎng)絡(luò)信息, 2007(7): 78-81.
[5]? GONZALEZ R C, WOODS R E. Digital image processing second edition [M]. Publishing house of electronics Industry, 2008.
[6] ?楊維, 李歧強(qiáng). 粒子群優(yōu)化算法綜述[J]. 中國(guó)工程科學(xué), 2004(5): 87-94.
[7] ?鐘珞, 饒文碧, 鄒承明. 人工神經(jīng)網(wǎng)絡(luò)原理及其融合應(yīng)用技術(shù)[M]. 北京:科學(xué)出版社, 2007.
[8] ?潘昊, 侯清蘭. 基于粒子群優(yōu)化算法的BP網(wǎng)絡(luò)學(xué)習(xí)[J]. 計(jì)算機(jī)工程與應(yīng)用,2006(16): 41-43.
[9] ?魏海坤. 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)的理論與方法[M]. 北京:國(guó)防工業(yè)出版社, 2005.

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久久成人精品无人区| 欧美激情四色| 亚洲日本欧美天堂| 先锋影音网一区二区| 中国成人黄色视屏| 亚洲美女色禁图| 亚洲国产精品久久久久| 精品成人在线观看| 韩日精品中文字幕| 国产亚洲综合性久久久影院| 国产精品网站视频| 国产精品久久久久婷婷| 欧美偷拍另类| 国产精品mv在线观看| 欧美在线观看一二区| 亚洲综合成人在线| 亚洲永久精品大片| 亚洲免费一在线| 亚洲免费在线精品一区| 亚洲男人的天堂在线aⅴ视频| 亚洲一区二区三区精品在线| 中文亚洲视频在线| 亚洲午夜精品一区二区| 亚洲午夜在线观看| 亚洲欧美日韩在线| 午夜视频一区在线观看| 欧美在线视频观看| 久久精品在线| 久久综合狠狠| 欧美成ee人免费视频| 女生裸体视频一区二区三区| 免费一区视频| 欧美三级午夜理伦三级中文幕| 欧美亚韩一区| 国产精品久久毛片a| 国产精品一卡二卡| 国产亚洲一区二区精品| 伊甸园精品99久久久久久| 亚洲国产高清视频| 一本久道久久综合婷婷鲸鱼| 亚洲在线视频观看| 久久精品国产综合精品| 亚洲人成人一区二区在线观看| 亚洲人成网站在线播| 在线亚洲免费| 欧美一区2区视频在线观看| 久久激情综合| 欧美激情亚洲精品| 国产精品ⅴa在线观看h| 国产欧美在线视频| 在线观看日韩www视频免费| 亚洲精品欧美精品| 亚洲欧美日韩精品久久奇米色影视| 欧美中文在线观看| 亚洲精品影视| 亚洲欧美日韩在线一区| 噜噜噜噜噜久久久久久91| 欧美激情一二三区| 国产精品欧美精品| 亚洲电影av在线| 一区二区成人精品| 99视频热这里只有精品免费| 亚洲精品免费在线播放| 亚洲一区二区三区高清不卡| 久久精品国产精品| 中文久久精品| 一区二区免费看| 久久精品国产亚洲aⅴ| 欧美精品亚洲精品| 国产亚洲精品bv在线观看| 亚洲欧洲精品一区| 午夜在线电影亚洲一区| 亚洲美女视频在线免费观看| 欧美有码在线观看视频| 欧美国产日韩在线| 国产日本精品| 99re6热在线精品视频播放速度| 欧美影院午夜播放| 一区二区欧美在线| 久久在线91| 国产精品美女www爽爽爽| 亚洲丰满少妇videoshd| 欧美在线高清视频| 亚洲人成网站在线观看播放| 久久精品国产96久久久香蕉| 欧美日韩直播| 亚洲激情视频在线播放| 欧美在线观看一区二区| 先锋资源久久| 欧美日韩国产影片| 欧美性开放视频| 亚洲欧洲综合另类| 久久精品国产精品亚洲| 欧美亚洲在线观看| 欧美性一区二区| 亚洲精品偷拍| 亚洲国产日日夜夜| 亚洲欧美日韩一区在线| 欧美日韩精品一区二区三区| 曰韩精品一区二区| 欧美主播一区二区三区| 欧美一区=区| 国产精品国产三级国产普通话三级 | 亚洲一区网站| 欧美一区二区视频在线| 亚洲人成在线观看一区二区| 久久精品成人| 国产日产欧产精品推荐色| 在线观看视频亚洲| 久久er99精品| 久久精品免视看| 国产欧美二区| 亚洲一区二区免费| 亚洲资源av| 国产精品草莓在线免费观看| 亚洲精品在线观| 一区二区三区日韩| 欧美日韩久久精品| 亚洲精品一区在线观看香蕉| 999亚洲国产精| 噜噜噜躁狠狠躁狠狠精品视频 | 免费不卡亚洲欧美| 黄色综合网站| 亚洲国产二区| 免费观看30秒视频久久| 伊人婷婷久久| 亚洲精品免费网站| 欧美激情视频一区二区三区免费| 亚洲高清久久久| 日韩视频中文| 欧美日韩成人在线视频| 亚洲美女毛片| 亚洲一区国产视频| 国产麻豆成人精品| 欧美一区二区在线播放| 久久久久久午夜| 精品69视频一区二区三区| 久久精品国产一区二区电影| 久久全国免费视频| 在线欧美影院| 亚洲美女在线视频| 欧美私人啪啪vps| 亚洲伊人伊色伊影伊综合网| 性色av一区二区三区红粉影视| 国产精品日韩在线| 欧美一区二区高清| 欧美三级午夜理伦三级中文幕 | 欧美在线视频在线播放完整版免费观看 | 欧美精品久久一区| 国产一区二区三区免费观看| 性欧美精品高清| 免费观看日韩av| 亚洲精品乱码久久久久久按摩观| 在线综合欧美| 国产欧美一级| 亚洲黄色片网站| 欧美日本亚洲| 亚洲一区在线播放| 久久亚洲色图| 亚洲精选视频免费看| 亚洲综合激情| 黄色一区二区在线| 欧美一区国产二区| 欧美国产1区2区| 在线一区二区三区做爰视频网站 | 久久精品三级| 亚洲国产一区二区三区在线播 | 亚洲一区二区视频| 国产亚洲精品自拍| 9i看片成人免费高清| 国产精品午夜国产小视频| 亚洲电影激情视频网站| 欧美日韩国产精品一区| 亚洲欧美日韩综合一区| 欧美激情综合亚洲一二区| 午夜精品久久久久久久白皮肤| 欧美第一黄色网| 亚洲欧美在线看| 欧美国产欧美亚洲国产日韩mv天天看完整| 一本色道久久加勒比88综合 | 欧美激情亚洲综合一区| 午夜伦欧美伦电影理论片| 欧美精品三级日韩久久| 欧美一区深夜视频| 欧美视频在线观看视频极品| 亚洲国产99精品国自产| 国产精品久久国产精麻豆99网站| 亚洲国产婷婷香蕉久久久久久99| 欧美香蕉大胸在线视频观看| 亚洲欧洲三级| 国产欧美日韩另类一区| 99精品福利视频| 狠狠综合久久| 午夜精品99久久免费| 亚洲精品专区| 麻豆久久婷婷| 久久福利影视| 国产精品自在线| 亚洲欧美国产高清| 亚洲毛片网站|