《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 基于功率MOSFET設計考量
基于功率MOSFET設計考量
飛兆半導體公司
摘要: 要開發針對高級電源的先進功率器件并取得市場佳績,必須考慮和順應不斷演進的應用需求。這需要針對應用中的所有元件進行大量的優化工作,包括功率器件的半導體芯片、封裝、電路板布局,以及轉換器的工作頻率。飛兆半導體公司認識到這一挑戰,并使用新的設計原則來開發功率MOSFET。飛兆半導體在電源設計方面擁有的專業優勢,使其PowerTrench產品功能在業界穩占領先地位。
Abstract:
Key words :

用作功率開關的MOSFET

    隨著數十年來器件設計的不斷優化,功率MOSFET晶體管帶來了新的電路拓撲和電源效率的提升。功率器件從電流驅動變為電壓驅動,加快了這些產品的市場滲透速度。上世紀80年代,平面柵極功率MOSFET首度面向高壓器件,BVDSS電壓范圍達到500-600V,取得市場的成功。在這個時期,功率MOSFET的傳導損耗主要取決于溝道密度、結型場效應管(JFET)阻抗和外延阻抗(參見圖1)。隨著半導體行業光刻設備越來越精密,提高了晶體管單元密度,傳導損耗因而得以改善。光刻設備能夠實現更高的單元密度,同時也促使功率MOSFET的BVDSS范圍成功地下降到100V以內,實現了新的汽車電子、電源和電機控制應用。高壓MOSFET的傳導損耗問題也就轉移到外延設計之上。另一方面,MOSFET器件在降壓轉換器中的使用,以及更寬的電源電壓范圍(30V)要求,激發了市場對更高性能器件的需求。

圖1:平面功率MOSFET的導通阻抗元件

    上世紀90年代初期平面功率MOSFET技術的長足發展之時,出現了一類新型溝道柵極功率MOSFET,為低壓器件設立了新的性能標桿。這類溝道MOSFET采用一種嵌入在溝道區域并細致地蝕刻到器件的柵極結構,使得溝道密度增加一倍(第一代產品就達到每平方英寸1200萬個單元)。由于新技術能夠增加并行傳導通道的數量并減少JFET阻抗元件,因此使到傳導效率提高近30%。

    器件設計人員面對的挑戰是:技術提升除了增加單元密度,因為柵極-漏極區域交疊面積和柵極-源極交疊面積增加,所以同時引起容抗和柵極電荷的增加。因此,器件設計人員一直希望通過結構創新來減少開關損耗。飛兆半導體公司于1998年推出一種專為高效降壓轉換器而優化的溝道柵極功率MOSFET,也就是第一代PowerTrench® 產品。如今PowerTrench®已經過七代改進優化,演變為最新的降壓轉換器部件。

針對同步整流拓撲的功率MOSFET優化

    隨著首批微控制器開始使用有別于計算機的標準5V或12V電源,功率MOSFET也開始獲得廣泛應用。將直流電壓轉換成更低電壓的舊式降壓轉換器,成為低電壓開關功率器件發展的應用驅動力。而且開發焦點也從AC-DC開關電源和電機驅動,轉向要求更嚴苛的處理器以及能滿足特定的供電要求的相關外設組件。

    作為處理器電源的降壓轉換器隨即增配同步整流器以改善效率,并使用同步開關功率MOSFET來補充并最終替代肖特基整流二極管,從而降低傳導損耗。而移動計算技術的出現,對轉換器效率提出了更高求,進而推動了該技術的高度演進,成為現代功率MOSFET中使用的模式。

   在高技術水平下,易于確定對降壓轉換器MOSFET的要求。在大多數情況下,同步整流器或SyncFET™都在導通狀態下工作,并且其導通阻抗應當很小,以最大限度減少功耗。高側開關MOSFET由直流電源驅動,生成電脈沖,然后經LC濾波器平滑處理成連續的電壓,再施加到負載上。因為MOSFET的主要損耗來自開關動作,而且導通時間很短,所以開關器件速度要夠快,而且導通阻抗要夠小。開關和整流兩個環節交替處于導通狀態,但導通時段不能重疊,否則電源和接地間便會形成所謂直通(shoot-through),直接造成功率損耗。當開關器件導通時,SyncFET™的漏極電壓瞬變將在柵極CGS上產生感應電流和電壓,其大小則取決于CGS和CGD的幅度及兩者的比率以及開關瞬變速率。如果柵極電壓超過閾值,器件將再次導通,導致直通。所以只要CGS/CGD比率足夠大,便能夠防止漏極電壓瞬變誘發直通。

    分析該技術演進并明確MOSFET要求后,就能明白器件技術發展的主要推動因素。在圖2a的基本溝道柵極結構中,通過增加溝道的寬度/長度比,便可以降低導通阻抗。而按圖2b所示在溝道底部延伸氧化層厚度,就能夠提高開關速度和增大CGS/ CGD比率。最終的設定就如圖2c所示,在溝道的柵極下部額外嵌入一個電極,以增加漂移區電荷,從而降低導通阻抗;并且同時降低CGD,提高開關速度,并改變CGS /CGD比率,藉此最大限度地防止直通。

圖2:a)傳統溝道柵極功率MOSFET;b)溝道底部氧化層加厚的溝道MOSFET;c)增添屏蔽電極的溝道MOSFET。

    如今,飛兆半導體公司已將上述屏蔽器件的結構發展到新的精細水平。特定阻抗,或者說單位面積阻抗,已較上一代產品大幅降低,同時提高了業已出色的開關性能。過去的數代器件,例如飛兆半導體的領先產品SyncFET,也需要在低側同步整流器集成一個肖特基二極管,以降低MOSFET體二極管的死區時間(dead-time)傳導損耗,并控制體二極管反向恢復時產生的電壓瞬變。為了省去成本相對高昂的肖特基二極管,最新一代的產品采用二極管正向注入,以求最大限度地減小漏極屏蔽容抗,以及降低屏蔽阻抗等專業技術,力爭抑制那些不利的電壓瞬變行為,如漏極電壓過沖(over-shoot)。

    如圖3a和3b所示,新產品的電壓過沖和振蕩甚至大大低于采用集成肖特基部件的器件。SyncFET漏極電壓振蕩經過阻尼抑制,使該類應用中常見的EMI噪聲大大減少。該解決方案具有極其安靜的開關特性,可以完全省去用來消除振蕩的外部緩沖電路。

圖3:飛兆半導體器件的安靜開關行為(a)與傳統溝道產品開關行為(b)的比較

    由于器件技術不斷演進,新產品也開始百花齊放。這些產品通過降低MOSFET開關的功耗來提高性能及電壓轉換器的最大輸出電流。目前,SyncFET通常使用三個毫歐級部件,使多相轉換器的每級輸出電流都達到30A以上。鑒于過去數代產品的部件之間存在封裝互連阻抗,而這種互連阻抗與當今PowerTrench產品的整體阻抗相接近,相比之下,這是一項卓越的成就。封裝互連阻抗降低了八倍,使過去10年來針對半導體阻抗取得四倍的改進,結果使轉換器輸出電流增加了一倍。新產品在未來可達到的進展還包括提高工作頻率,使到濾波電感和電容更小,進而減少所用的電路板空間。

    包含封裝的控制器和(或)驅動電路以及功率開關的多芯片模塊正在打進諸如游戲機和便攜電腦之類的消費電子產品市場。這些新型部件的優勢包括減少電路板的寄生電感因素、避免了分立元件方案所產生的電壓瞬變,以及從轉換器剝奪功率的固有弱點,從而延長電池壽命,降低工作溫度,減低輻射噪聲或EMI,并減小電路板尺寸。

    封裝和MOSFET器件技術的進步,大多來自于日益增多的仿真技術的使用,讓工程師能夠開發創新的解決方案。本文所述的半導體技術發展就依賴于器件的有限元模擬分析和應用的模擬分析,從而對半導體 、封裝、柵極驅動電路和電路板寄生因素間的相互影響有更深入的了解。仿真技術還能讓人們深入了解器件參數變化的工藝環節,找到最大限度消除這些變化的解決方案。

結論

    要開發針對高級電源的先進功率器件并取得市場佳績,必須考慮和順應不斷演進的應用需求。這需要針對應用中的所有元件進行大量的優化工作,包括功率器件的半導體芯片、封裝、電路板布局,以及轉換器的工作頻率。飛兆半導體公司認識到這一挑戰,并使用新的設計原則來開發功率MOSFET。飛兆半導體在電源設計方面擁有的專業優勢,使其PowerTrench產品功能在業界穩占領先地位。

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
国产综合久久久久久| 99热这里只有精品8| 欧美日本簧片| 免费观看日韩av| 久久人人97超碰国产公开结果| 香蕉久久夜色精品国产| 亚洲一区二区三区在线| 中文日韩在线| 亚洲午夜精品网| 亚洲女爱视频在线| 亚洲欧美在线一区二区| 亚洲欧美日本国产专区一区| 亚洲一区二区三区国产| 亚洲午夜一区二区| 亚洲伊人一本大道中文字幕| 亚洲一区二区三区影院| 亚洲在线一区二区| 亚洲在线黄色| 欧美一区观看| 久久久精品国产一区二区三区| 久久久av水蜜桃| 久久夜色精品国产亚洲aⅴ| 老巨人导航500精品| 欧美sm极限捆绑bd| 欧美人在线观看| 欧美日一区二区在线观看| 国产精品99一区二区| 国产精品久在线观看| 国产精品一区二区视频| 国产性做久久久久久| 好看的亚洲午夜视频在线| 亚洲高清在线观看一区| 亚洲精品美女在线观看| 在线视频你懂得一区| 午夜伦理片一区| 亚洲国产精品999| 亚洲蜜桃精久久久久久久| 宅男精品导航| 欧美一级片久久久久久久| 久久漫画官网| 欧美激情乱人伦| 国产精品久久久久久模特| 国产日韩欧美中文| 亚洲成人在线视频播放| 日韩午夜免费视频| 欧美亚洲免费电影| 最近中文字幕日韩精品| 亚洲视频在线看| 欧美在线中文字幕| 免费观看成人| 欧美午夜在线观看| 国产有码一区二区| 亚洲精品久久久久久久久久久 | 亚洲乱码国产乱码精品精可以看 | 欧美性猛片xxxx免费看久爱| 国产精品专区h在线观看| 在线观看成人av电影| 日韩视频永久免费观看| 亚洲综合日韩在线| 亚洲精品一区二区三区蜜桃久| 亚洲综合色丁香婷婷六月图片| 久久久夜精品| 欧美日韩中文字幕在线视频| 国产真实精品久久二三区| 日韩视频一区| 久久精品免费播放| 亚洲一区二区免费看| 久久一区二区三区四区| 欧美午夜精品久久久久久久| 永久免费视频成人| 在线午夜精品| 亚洲黄色大片| 欧美一区二区播放| 欧美精品二区| 国产在线拍偷自揄拍精品| 在线一区二区视频| 亚洲欧洲在线免费| 欧美一区永久视频免费观看| 欧美精品一区在线播放| 国产一区二区三区无遮挡| 99精品视频免费| 亚洲黄页一区| 久久www成人_看片免费不卡| 欧美日韩国产精品自在自线| 狠狠色狠狠色综合日日五| 亚洲伊人伊色伊影伊综合网| 99亚洲伊人久久精品影院红桃| 久久久噜噜噜久久中文字免| 国产精品黄视频| 亚洲人体影院| 亚洲国产女人aaa毛片在线| 久久成人免费网| 欧美午夜视频网站| 亚洲国产精品一区二区三区| 欧美在线视频播放| 午夜天堂精品久久久久| 欧美日本一区二区三区| 在线日韩欧美视频| 久久狠狠亚洲综合| 欧美在线影院| 国产精品视频自拍| 夜夜嗨网站十八久久| 一本不卡影院| 欧美激情国产日韩| 亚洲成色777777在线观看影院| 久久国产福利| 久久精品30| 国产区欧美区日韩区| 亚洲免费视频一区二区| 亚洲综合欧美| 国产精品久久久久77777| 99riav久久精品riav| 一本久久a久久精品亚洲| 欧美国产在线电影| 亚洲国产婷婷| 亚洲人体大胆视频| 久久久国产亚洲精品| 国产一区二区0| 欧美一区二区性| 久久久久久9| 国产一区二区三区网站| 久久se精品一区精品二区| 久久久久久久91| 国产一区二区三区四区hd| 欧美在线资源| 久久夜色精品国产亚洲aⅴ| 激情亚洲成人| 亚洲人成人99网站| 免费毛片一区二区三区久久久| **欧美日韩vr在线| 亚洲人成高清| 欧美理论电影在线播放| 亚洲美女性视频| 亚洲午夜一区| 国产精品一区二区在线观看网站 | 久久久福利视频| 激情视频一区二区三区| 亚洲第一天堂无码专区| 蜜臀99久久精品久久久久久软件 | 妖精视频成人观看www| 欧美日韩国产电影| 国产精品99久久久久久有的能看| 亚洲伊人久久综合| 国产欧美在线| 亚洲国产精品欧美一二99| 欧美不卡视频一区发布| 亚洲人成久久| 亚洲免费影院| 国产一区二区精品久久91| 亚洲国产老妈| 欧美日本国产精品| 在线亚洲一区观看| 久久九九精品| 亚洲国产精品高清久久久| 亚洲视频在线一区观看| 国产区亚洲区欧美区| 亚洲激情小视频| 国产精品盗摄久久久| 香蕉成人伊视频在线观看| 免费永久网站黄欧美| 99精品欧美一区| 久久九九免费视频| 亚洲欧洲一区二区天堂久久| 亚洲中午字幕| 韩曰欧美视频免费观看| 一区二区欧美日韩视频| 国产欧美日韩中文字幕在线| 亚洲激情成人在线| 国产精品久久久久一区| 亚洲国产高潮在线观看| 欧美色欧美亚洲高清在线视频| 久久国产精品久久久久久| 欧美高清视频免费观看| 亚洲免费视频成人| 欧美高清不卡在线| 午夜激情综合网| 欧美精品在欧美一区二区少妇| 亚洲综合日韩中文字幕v在线| 欧美成人dvd在线视频| 亚洲一级片在线看| 欧美福利电影网| 午夜精品视频在线观看| 欧美精品国产精品| 午夜精品久久久久久久99水蜜桃 | 国产精品久久亚洲7777| 亚洲精品国产精品国产自| 国产精品午夜在线| 9色porny自拍视频一区二区| 国产亚洲精品一区二555| 国产精品99久久久久久久久| 国产在线国偷精品产拍免费yy| 亚洲午夜久久久久久久久电影网| 精品不卡一区二区三区| 午夜精品久久久| 日韩视频一区二区三区| 久久综合狠狠综合久久综合88 | 国产欧美日韩亚州综合| 一区二区三区国产盗摄| 狠狠色狠狠色综合系列| 午夜精品剧场|