《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 電路補償基于測壓元件平衡的系統偏置
電路補償基于測壓元件平衡的系統偏置
摘要: 設計電阻橋式傳感器與5V單電源供電的ADC接口是一個新的挑戰。有些應用需要輸出電壓在0V到滿量程電壓之間以高精度波動。用大多數單電源儀表放大器,當輸出信號接近0V,接近單電源最低輸出擺幅限制時,會出現問題。一個好的單電源儀表放大器可在接近于單電源地的范圍內擺動, 即使有真正的軌對軌輸出,也不能達到地。
Abstract:
Key words :

  雙DAC保存系統偏置電壓,在電源校準程序中決定了該電壓。

  設計電阻橋式傳感器與5V單電源供電的ADC接口是一個新的挑戰。有些應用需要輸出電壓在0V到滿量程電壓(如4.096V)之間以高精度波動。用大多數單電源儀表放大器,當輸出信號接近0V,接近單電源最低輸出擺幅限制時,會出現問題。一個好的單電源儀表放大器可在接近于單電源地的范圍內擺動, 即使有真正的軌對軌輸出,也不能達到地。

  在這個應用中,傳感器是一個精密的測壓元件,其額定負載5kg,即約11磅。在鋁盤上測重大約150g的物體,即大約5盎司。由于鋁盤自重,即使沒有任何物體稱重,儀表放大器的輸出信號也不能低到0V。現在,問題是如何補償儀表放大器的輸出偏置電壓和鋁盤本身產生的電壓值。

  軟件彌補系統偏置是最簡單的方法。電源啟動期間,鋁盤上沒有稱重物體,系統可以獲取偏移電壓,并將數據記錄在單片機內存中。隨后,當有物體稱重時,從獲得的數據中減去它即可。但是,這種做法不能達到5kg滿量程,僅能達到5-0.15kg或4.85kg。

  本設計方案說明如何利用單片機實現硬件補償。當電源啟動后,運行軟件程序復位系統偏移。解

 

決方案如圖1所示,基于四個來自于Linear公司IC的簡單電路。精密參考電壓源IC1,有高達50mA的最小輸出電流。它提供4.096V輸出電壓驅動測壓元件,并設置12位ADC(IC3)的滿量程范圍。高精確儀表放大器LT1789-1(IC2)的特點是在0到70°C溫度范圍內,最大輸入失調電壓為150 µV,軌對軌輸出電壓相對地110mV范圍內擺動時,最大輸入失調偏置電壓是 0.5µV/°C。通過精密電阻R2(阻值為500Ω)設定增益,當稱重是5kg時,輸出范圍為4.096V,其最大輸入信號是VCC×S=4.096V×2 mV/V=8.192 mV,這里S是該傳感器的靈敏度。

 

  雙通道DAC(IC4)的DAC_A輸出在儀表放大器參考引腳處,提供200mV的參考電壓,避免放大器本身近地飽和,但傳輸特性不是線性關系。放大器最壞情況下輸出偏移是:VREF+VPAN±VOFFSET=200 mV+125 mV±500×150 µV=325 mV±75 mV="250" mV/400 mV,這里VPAN=125 mV,是鋁盤自重產生的電壓值。

<a class=電路補償基于測壓元件平衡的系統偏置圖示" border="0" height="220" hspace="0" src="http://files.chinaaet.com/images/20100811/a778bc16-8f86-4100-b136-bf7f7f43fbc8.jpg" vspace="0" width="500" />

  因此系統輸出偏移是250到400mV。電源啟動,微控制器運行程序設置DAC_A輸出為200mV,同時,增加雙通道DAC(IC4)的DAC_B輸出直到等于ADC(IC3)管腳2的系統偏置,轉換結果就是000h。這一結果是可能的,因為IC4包含兩個12位2.5V滿量程電壓的DAC,最低有效位(LSB)等于0.61mV,小于IC3為1mV的分辨率。這個數字相當于該天平的分辨率:5000g/4096=1.22g。當最大負載5kg時,儀表放大器的最大輸出電壓是4.096V+VOUT_TOTAL_OFFSET_INA=4.346V/4.496V,低于4.62V高飽和溫度的最壞情況。

  IC3有一個單極差分輸入,所以可以從+IN輸入電壓中減去一個恒定電壓值等于IC4的DAC_B提供的系統偏置。在第一個半時鐘周期內,ADC采樣和保持正向輸入電壓。這階段結束后,或在獲取時間內,輸入電容切換到負輸入并開始轉換。在IC3輸入處的RC輸入濾波器的時間常數為0.5µs,允許在正負輸入電壓利用最高為200kHz時鐘頻率在轉換時間的第一時鐘周期內達到12位精度。如果想增加時間常數,必須降低時鐘頻率。

  此外,DAC和ADC有三線串行接口,可方便地將數據傳輸到最高采樣率為12.5kS/s的普通微控制器。當ADC處于沒有轉換的時候,它會自動把功率降至1nA的電源電流,而且如果單片機通過其引腳3來關閉IC1,電路限制電源電流在最壞情況下僅為1mA,因為所有的IC集成電路都是微功耗的。

  英文原文:

  Circuit compensates system offset of a load-cell-based balance

  A dual DAC stores the system-offset voltage, which gets determined during a power-on calibration sequence.

  Luca Bruno, ITIS Hensemberger, Monza, Italy; Edited by Charles H Small and Fran Granville -- EDN, 8/16/2007

  It’s a challenge to interface a resistive bridge sensor with an ADC receiving its power from a 5V single-supply power source. Some applications require output-voltage swings from 0V to a full-scale voltage, such as 4.096V, with excellent accuracy. With most single-supply instrumentation amplifiers, problems arise when the output signal approaches 0V, near the lower output-swing limit of a single-supply instrumentation amp. A good single-supply instrumentation amp may swing close to single-supply ground but does not reach ground even if it has a true rail-to-rail output.

 

  In this application, the sensor is a precision load cell with a nominal load of 5 kg, or about 11 lbs, to weigh objects on an aluminum pan weighing approximately 150g, or approximately 5 oz. Because of the pan’s weight, the instrumentation amplifier’s output signal can never go down to 0V, even if there are no objects to weigh. Now, the problem arises of how to compensate the instrumentation amp’s output-offset voltage and the voltage that the pan itself produces.

  A software approach is the simplest way to compensate the system offset. During power-up, there are no objects to weigh on the pan, and the system can thus acquire the offset voltage and hold the data in the microcontroller’s memory, subsequently subtracting it from the data it acquired when there was an object to weigh. This approach, however, does not reach the 5-kg full-scale of the balance, reaching only 5–0.15 kg, or 4.85 kg.

  This Design Idea shows how to achieve hardware compensation using a microcontroller that, on power-up, starts a software routine to reset the system offset. The solution is a simple circuit based on four ICs from Linear Technology in Figure 1. A precision voltage reference, IC1, has a high minimum output current of 50 mA. It provides an output voltage of 4.096V to power the load cell and to set the full-scale of the 12-bit ADC, IC3. The highly accurate LT1789-1 instrumentation amplifier, IC2, features maximum input-offset voltage of 150 µV over the temperature range of 0 to 70°C and maximum input-drift-offset voltage of 0.5 µV/°C over the temperature range of 0 to 70°C with rail-to-rail output that swings within 110 mV of ground. You set the gain through precision resistor R2 to a nominal value of 500Ω to give an output span of 4.096V when the load is 5 kg and its maximum input signal is VCC×S=4.096V×2 mV/V=8.192 mV, where S is the sensor’s sensitivity.

 

  The output of DAC_A of dual-DAC IC4 provides a reference voltage of 200 mV at the refer

 

ence pin of the instrumentation amp to avoid saturation near ground of the amplifier itself, where its transfer characteristic is not quite linear. The amplifier’s total worst-case output offset is: VREF+VPAN±VOFFSET=200 mV+125 mV±500×150 µV=325 mV±75 mV="250" mV/400 mV, where VPAN="125" mV and is the voltage that the pan’s weight produces.

 

  The system-output offset is thus 250 to 400 mV. On power-up, the microcontroller starts a routine that sets the output of the DAC_A equal to 200 mV, while it increases the output of the DAC_B of dual-DAC IC4 until it is equal to the system offset on Pin 2 of ADC IC3, and the result of the conversion is 000h. This result is possible because IC4 contains two 12-bit DACs with the same full-scale voltage of 2.5V, making 1 LSB equal to 0.61 mV, which is smaller than IC3’s resolution of 1 mV. This figure corresponds to the resolution of the balance: 5000g/4096=1.22g. The maximum output voltage of the instrumentation amp with a maximum load of 5 kg is 4.096V+VOUT_TOTAL_OFFSET_INA=4.346V/4.496V, which is less than the minimum worst case over temperature of 4.62V high saturation.

  IC3 has a single unipolar differential input, so you can subtract from the +IN input voltage a constant voltage of value equal to the system offset that that DAC_B of IC4 provides. During the first one and a half clock cycles, the ADC samples and holds the positive input. At the end of this phase, or acquisition time, the input capacitor switches to the negative input, and the conversion starts. The RC-input filters on the inputs of IC3 have a time constant of 0.5 µsec to permit the negative and positive input voltages to settle to a 12-bit accuracy during the first clock cycle of the conversion time, using the maximum clock frequency, which is 200 kHz. If you want to increase the time constant, then you must use a lower clock frequency.

 

  Furthermore, the DAC and ADC have a three-wire serial interface that easily permits transferring data to a wide range of microcontrollers with a maximum sampling rate of 12.5k samples/sec. When the ADC performs no conversions, it automatically powers down to 1 nA of supply current, and, if the microcontroller shuts down IC1 through its Pin 3, the circuit draws a worst-case supply current of just 1 mA, because all the ICs are micropower.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久久综合中文字幕| 国产精品视频一二| 午夜在线精品偷拍| 亚洲天堂av在线免费观看| 亚洲国产精品精华液网站| 欧美一区二区三区婷婷月色| 亚洲一区二区在线播放| 99热这里只有成人精品国产| 亚洲一区二区三区色| 性视频1819p久久| 一卡二卡3卡四卡高清精品视频| 亚洲福利视频二区| 欧美中文字幕| 欧美一区二区三区四区高清| 一区二区三区日韩欧美精品| 在线亚洲一区二区| 亚洲天堂成人| 亚洲综合导航| 亚洲欧美激情诱惑| 午夜精品久久久久久久99热浪潮| 亚洲一区视频在线| 亚洲欧美日韩精品久久亚洲区| 亚洲午夜一区| 午夜精品成人在线视频| 亚洲欧美一区二区三区久久| 欧美夜福利tv在线| 久久精品在线| 麻豆精品视频在线| 欧美暴力喷水在线| 欧美精品成人| 欧美日精品一区视频| 国产精品久久久对白| 国产欧美精品| 国产一区二区中文字幕免费看| 国内自拍一区| 亚洲国产99精品国自产| 亚洲日本久久| 亚洲视频www| 午夜亚洲性色视频| 亚洲国产精品日韩| 在线午夜精品| 亚洲一区亚洲二区| 欧美体内she精视频| 亚洲最新视频在线| 夜夜嗨一区二区三区| 在线午夜精品| 亚洲视频在线看| 欧美一级网站| 久久免费一区| 欧美日韩国产小视频| 国产精品爱久久久久久久| 国产精品综合av一区二区国产馆| 国产中文一区| 亚洲精品乱码久久久久久日本蜜臀 | 欧美高清视频免费观看| 欧美日韩国产色站一区二区三区| 国产精品v欧美精品v日本精品动漫| 国产乱码精品一区二区三区不卡 | 久久嫩草精品久久久精品一| 欧美人与禽猛交乱配| 国产精品另类一区| 影音先锋另类| 亚洲一级黄色片| 91久久久久久久久| 亚洲欧美日韩精品综合在线观看| 美日韩精品视频免费看| 国产精品国产三级国产a| 激情成人在线视频| 99riav1国产精品视频| 欧美专区在线观看| 亚洲视频在线观看三级| 麻豆乱码国产一区二区三区| 欧美三级资源在线| 狠狠久久亚洲欧美| 极品尤物久久久av免费看| 日韩亚洲在线观看| 亚洲国产电影| 亚洲欧美久久久久一区二区三区| 久久综合中文字幕| 国产精品日韩欧美大师| 亚洲精品国产精品久久清纯直播| 午夜欧美精品| 亚洲图片欧洲图片日韩av| 老司机精品视频网站| 国产精品亚洲激情| 亚洲精品乱码久久久久| 久久精品av麻豆的观看方式 | 国产精品国产a| 亚洲三级视频| 亚洲国产一区二区视频| 久久久久久久久久久久久9999| 欧美日韩视频不卡| 91久久精品国产91久久| 亚洲大片在线观看| 久久高清一区| 国产精品视频xxxx| 中日韩高清电影网| 亚洲午夜精品17c| 欧美日韩大片一区二区三区| 在线看片日韩| 亚洲国产va精品久久久不卡综合| 欧美一区二视频| 国产精品入口麻豆原神| 一本色道**综合亚洲精品蜜桃冫| 亚洲免费av网站| 欧美成人中文字幕在线| 伊人一区二区三区久久精品| 久久精品国产精品亚洲综合| 久久超碰97人人做人人爱| 国产精品久久久久久久第一福利| 亚洲看片免费| 一本久道综合久久精品| 欧美激情按摩| 91久久精品久久国产性色也91| 最新精品在线| 欧美成年人视频网站| 亚洲成人资源网| 亚洲国产精品v| 亚洲激情午夜| 欧美在线播放一区二区| 亚洲大胆人体在线| 久久综合婷婷| 国产一区二区三区四区三区四| 亚洲无毛电影| 亚洲欧美日本精品| 欧美私人网站| 亚洲小少妇裸体bbw| 亚洲一区二区不卡免费| 欧美日韩国语| 亚洲精品日日夜夜| 日韩午夜精品| 欧美精品在线视频| 亚洲人成网站777色婷婷| 91久久久久久久久久久久久| 久久手机免费观看| 精品成人乱色一区二区| 亚洲日韩成人| 欧美1区免费| 亚洲国产人成综合网站| 亚洲人成免费| 你懂的视频欧美| 一本久久a久久精品亚洲| 亚洲视频999| 国产精品对白刺激久久久| 亚洲视频免费| 性欧美8khd高清极品| 狠狠入ady亚洲精品| 亚洲成人在线视频播放| 麻豆成人精品| 亚洲黄色在线观看| 夜夜嗨一区二区| 国产精品专区h在线观看| 小嫩嫩精品导航| 久久精品男女| 精品成人在线视频| 亚洲欧洲日本专区| 国产精品美女久久久久久免费| 亚洲一二三区视频在线观看| 欧美亚洲日本网站| 国产日韩欧美在线视频观看| 午夜伦理片一区| 欧美—级a级欧美特级ar全黄| 亚洲看片一区| 午夜精品久久久久久久99水蜜桃| 国产精品亚洲视频| 久久国产日韩欧美| 欧美成人综合一区| 亚洲人成在线观看网站高清| 亚洲欧美日韩一区二区在线| 国产精品一区二区a| 欧美在线电影| 欧美刺激性大交免费视频| 亚洲黄色在线看| 欧美一区二区三区久久精品 | 亚洲国内高清视频| 正在播放亚洲| 国产欧亚日韩视频| 欧美一级在线视频| 欧美日韩成人在线视频| 亚洲综合色婷婷| 久久一二三四| 亚洲美女视频网| 亚洲欧美www| 亚洲国产高清自拍| 亚洲欧美国产毛片在线| 国产一区二区三区免费不卡| 亚洲国产综合在线| 在线精品视频一区二区三四| 欧美日韩免费一区| 亚洲一区激情| 久久久亚洲一区| 亚洲精品免费一区二区三区| 亚洲一区国产视频| 国产一区二区在线观看免费播放| 亚洲日本乱码在线观看| 国产精品电影网站| 亚洲激情在线视频| 国产精品二区影院| 91久久久久久| 精久久久久久|