《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 理想置亂圖像差分直方圖分布模型的數學驗證
理想置亂圖像差分直方圖分布模型的數學驗證
2015年電子技術應用第1期
王聰麗1,2,陳志斌1,丁娜娜2
1.軍械工程學院 軍械技術研究所,河北 石家莊050003; 2.武警石家莊士官學校,河北 石家莊050003
摘要: 目前圖像置亂度評價算法缺乏統一的標準和模型,某些模型的提出缺乏科學依據與嚴格證明,如理想置亂圖像的差分直方圖分布模型。在分析置亂圖像差分直方圖分布的基礎上,利用Chi-Square假設檢驗和回歸分析方法進行差分直方圖分布函數的擬合檢驗和回歸系數預測。實驗結果證明,在理想置亂情況下,圖像的差分直方圖應符合線性分布,為理想置亂圖像差分直方圖分布模型的建立提供了理論基礎。
中圖分類號: TP309.7
文獻標識碼: A
文章編號: 0258-7998(2015)01-0107-04
The mathematical validation on the distribution model of ideal scrambled image′s difference histogram
Wang Congli1,2,Chen Zhibin1,Ding Nana2
1.Ordnance Institute of Technology,Ordnance Engineering College,Shijiazhuang 050003,China; 2.Shijiazhuang Non-commissioned Officer Academy of CAPF,Shijiazhuang 050003,China
Abstract: The main shortage of evaluation methods on image scrambling degree is the lack of criterions and models, and some models have been presented without scientific basis. For example, the linear distribution model of ideal scrambled image′s difference histogram has been advanced in paper without justified. Based on the difference histogram of scrambled image, Pearson Chi-Square hypothesis test and regression analysis are used to test its distribution characteristics in this paper. Simulation results show that the distribution of difference histogram of ideal scrambled image should accord with the linear model. The validation in this paper can provide precise theoretical basis to establish the linear model of difference histogram of ideal scrambled image.
Key words : image scrambling;scrambling degree evaluation;difference histogram;hypothesis test;regression analysis

  

0 引言

  圖像置亂技術是當前主流的圖像加密技術,眾多研究者已提出了具有良好的置亂性能的圖像置亂算法[1-5]。但是對于圖像置亂性能(置亂度)的評價研究卻相對滯后,大部分依賴原始圖像,如文獻[6-8]等,缺乏統一的標準和模型。圖像置亂度評價應重點研究根據圖像各種特征建立科學的模型,并從模型出發設計具體評價指標,最終形成較完善的、能夠獨立于原始圖像的盲評價指標體系。圖像特征模型的建立有兩種方式:(1)根據自然圖像特征建立自然圖像的特征模型;(2)基于理想置亂圖像建立特征模型。前者需對大量自然圖像特征進行統計分析,工作量大。后者所依據的理想置亂圖像實際上是不能得到的,因此只能根據實際置亂圖像的特征對理想置亂圖像特征進行擬合,來建立模型。

  在文獻[9]中對置亂圖像差分直方圖的分布特性進行了詳細分析,指出在理想置亂情況下,置亂圖像的差分直方圖應服從線性分布,并給出了相應的線性模型:

  1.png

  該模型是一個線性分段函數,自變量x為差分值,函數值為圖像差分值個數。該模型表明:理想置亂情況下,置亂圖像的差分直方圖統計分布曲線是以差分值為自變量的分段線性函數。該模型的提出使得針對圖像差分的置亂度評價工作有了科學的模型。但只是根據大量實驗數據的分布特性,主觀確定了該線性模型,并未進行科學、詳細的證明。本文以此為出發點,采用統計分析方法,將此問題轉化為分布函數的擬合檢驗和回歸分析問題,通過建立線性回歸方程,求得回歸系數的最小二乘估計,來驗證此模型的科學性。

1 分布函數的擬合檢驗

  若提出假設的形式為 :

  H0:F(x)=F0(x),H1:F(x)≠F0(x)(2)

  其中F(x)為需要檢驗的分布函數,F0(x)為已知分布函數,分布函數中可以含有或不含未知參數。假設檢驗問題稱為對分布函數的擬合檢驗。

  常用的假設檢驗方法有(J]MVU0Z3SQH3(M08PPB73G.jpg檢驗和柯爾莫戈羅夫K檢驗。本文以(J]MVU0Z3SQH3(M08PPB73G.jpg檢驗為例來進行驗證。

  設3V7E$5PQG7[)LHZ7~~F6PM6.jpg是分布函數F(x)的總體,I_J0GYPEK75I]A@4OQ[2UUL.png是一個樣本。將R1=(-∞,+∞)分為m個子區間(xi-1,xi],其中-∞=x0<x1<…<xm=+∞。令vi表示樣本I_J0GYPEK75I]A@4OQ[2UUL.png落入區間(xi-1,xi]的個數或頻數,npi稱為樣本I_J0GYPEK75I]A@4OQ[2UUL.png落入區間(xi-1,xi]的理論頻數。作統計量:

  3.png

  ?濁依賴于n和m,以下假定m是定值。

  定理1[10](Pearson):如果H0正確,則:

  4.png

  其中:

  QBV`DL`0`9E)Q059F94B@N7.png

  式(5)是(J]MVU0Z3SQH3(M08PPB73G.jpg(m-1)分布的密度函數,這里設F0(x)不含未知數。

  對于定理1, 當n足夠大時可認為$73{LD0S_G{0OLN18@UO~LA.jpg。對已知的顯著性水平(OD22`I}WD06SMJ~[02`G96.jpg,從(J]MVU0Z3SQH3(M08PPB73G.jpg分布表中查得1)XU5YW5}HM)M3NJ{YM@2)O.jpg(m-1),使得_@M@S98K@$3Q8Z5`_KE8R(T.jpg,即取否定域為(1)XU5YW5}HM)M3NJ{YM@2)O.jpg(m-1),+∞)。若RA{XK1_2U%5YQ_8LJQMHJ3A.jpg>1)XU5YW5}HM)M3NJ{YM@2)O.jpg(m-1),則否定H0。

  理想置亂情況下,令F0(x)=f(x),F(x)為置亂圖像實際的差分直方圖分布個數。因為圖像差分值取值范圍為-255~255,因此將R1=(-∞,+∞)分為510個子區間,子區間長度為1。F(xi)代表差分值為xi的元素數目,即為樣本落入子區間(xi-1,xi]的頻數,因此有樣本頻數vi=F(xi)。理論頻數npi=F0(xi)=f(xi)。根據式(3)構造(J]MVU0Z3SQH3(M08PPB73G.jpg檢驗指標:

  6.png

  由于n足夠大,因此,可認為RA{XK1_2U%5YQ_8LJQMHJ3A.jpg(J]MVU0Z3SQH3(M08PPB73G.jpg(509)。自由度為509,取值較大,因此(J]MVU0Z3SQH3(M08PPB73G.jpg分布近似服從N(509,2 * 509),可采用正態分布來進行實際計算。給定顯著性水平(OD22`I}WD06SMJ~[02`G96.jpg=0.05。

  綜上所述,當設計的(J]MVU0Z3SQH3(M08PPB73G.jpg統計指標RA{XK1_2U%5YQ_8LJQMHJ3A.jpg>562.593時,拒絕H0,否則接受H0。

  2 線性回歸模型的建立

  根據置亂圖像的差分直方圖分布圖,分析可能對分布個數產生影響的因素只有差分值。因此建立線性模型:

  7.png

  F由差分直方圖分布個數的n次觀察值構成,F(xi)代表差分值為xi的元素數目。X稱為設計矩陣,由常數項和差分值的n次觀察值構成,n=511。?茁是未知參數,稱為回歸系數。e為隨機向量,有時稱為誤差隨機向量。

  根據線性模型(7),要選擇合適的(FA0CZ]`XME$Z[{P30ZPVV3.jpg使誤差項的平方和最小,即求(FA0CZ]`XME$Z[{P30ZPVV3.jpg的最小二乘估計KW]SG5L0FX0_UHZ5HHPZ$5E.jpg

  若KW]SG5L0FX0_UHZ5HHPZ$5E.jpg滿足條件:

  8.png

  則KW]SG5L0FX0_UHZ5HHPZ$5E.jpg(FA0CZ]`XME$Z[{P30ZPVV3.jpg的最小二乘估計。令:

  9.png

  將式(9)對(FA0CZ]`XME$Z[{P30ZPVV3.jpgi求偏導并令其等于0,可得到正規方程組:

  10.png

  因為X的秩rank(X)=2,因此最小二乘解唯一,并由下式給出:

  11.png

  ?滓2的無偏估計為:

  12.png

  對每一幅圖像,其平均殘差為:

  13.png

3 實驗結果

  3.1 分布函數擬合檢驗

  利用文獻[5]中的方法對圖像進行置亂變換,置亂次數為100次。選取該方法是因為該方法同時實現了像素值和像素位置置亂,具有代表性。對100幅置亂圖像進行差分直方圖分布特性的假設檢驗,檢驗結果如表1所示。

007.jpg

001.jpg

  表1中指出,在100幅置亂圖像中,差分直方圖符合分布模型f(x)的圖像數量為56幅,不符合該分布的圖像數量為44幅。在符合該分布模型的56幅圖像中,最小的?字2指標?濁=454.38,對應的置亂次數T=91。考察該置亂圖像和差分直方圖(圖1)可知,置亂圖像具有良好的類似噪聲特性,其差分直方圖具有明顯的線性分布特性。同時可認為該56幅圖像已近似達到理想置亂。對于被拒絕的圖像,由于其差分直方圖分布不符合線性分布,導致(J]MVU0Z3SQH3(M08PPB73G.jpg指標很大。

002.jpg

  圖2給出了?字2指標隨著置亂次數的變換曲線。從圖中可看出,大部分圖像的(J]MVU0Z3SQH3(M08PPB73G.jpg指標數值分布在1 000以下。但是當T=24、48、72、96時,該統計指標遠遠高于其他值。考察具有上述置亂次數的圖像及其差分直方圖,這些圖像有著明顯的規則性,且差分直方圖分布與線性模型相差很大,與參考文獻[1]中的置亂度評價結果完全吻合,這說明本文設計的(J]MVU0Z3SQH3(M08PPB73G.jpg指標能夠科學、合理地反映樣本頻數與理論頻數間的差別。

003.jpg

  圖3給出了不同的(J]MVU0Z3SQH3(M08PPB73G.jpg指標下所求的p值分布。概率p<0.05的圖像均認為其差分直方圖分布與模型f(x)不相符。由于p具有如下性質:(1)0≤p≤1;(2)理想置亂時,p=1。因此該p值可作為圖像置亂度評價參數直接進行置亂度評價,比如當RA{XK1_2U%5YQ_8LJQMHJ3A.jpg=454.38時,可認為具有最好的置亂效果,對應p=0.96。

  3.2 回歸方程系數預測

  進行分布函數擬合檢驗的目的是選擇出置亂效果較好的圖像,剔除不理想的測試樣本。對于接受H0的56幅圖像,首先計算其差分直方圖,然后進一步根據式(11)對差分直方圖分布函數的系數進行最小二乘估計。圖4、圖5給出了56幅置亂圖像差分直方圖分布函數的回歸方程系數最小二乘估計值的分布圖。

  由回歸系數分布圖4和圖5可以得出:(1)常數項系數β1大部分在區間[250,260]范圍內取值,與差分值取值范圍無關。(2)系數β2的取值和差分值取值范圍有關,當差分值-255≤xi<0時,β2∈[0.9,1.1];當差分值0≤xi≤255時,β2∈[-1.1,-0.9]。

  根據圖4和圖5,為了消除樣本獨立性對系數的影響,求出線性模型最終的系數,進一步計算β1、β2的均值(表2),可知式(7)與所提出的線性模型(1)完全吻合,驗證了理想置亂圖像差分直方圖線性模型(1)的正確性。

008.jpg

  3.3 殘差分析


006.jpg

  在回歸分析過程中假設誤差e服從均值為0的正態分布(式(7))。圖6給出了56幅圖像的平均殘差分布圖,平均殘差根據式(13)進行計算。由圖可知,大多數圖的平均殘差都接近于0,說明誤差的統計分布符合式(7)對誤差e的統計分布特征的假設。

4 總結與展望

  由于前期研究中提出的理想置亂情況下圖像差分直方圖分布模型沒有進行嚴格的數學證明,缺乏理論基礎。為了解決該問題,本文立足于統計分析,利用線性(J]MVU0Z3SQH3(M08PPB73G.jpg假設檢驗及回歸模型預測理論,通過將實際置亂圖像的差分直方圖分布和參考文獻[1]中提出的線性模型進行分布函數擬合檢驗,選出置亂效果好的置亂圖像,進一步對這些進行回歸系數預測。實驗結果驗證了在理想置亂情況下,置亂圖像的差分直方圖服從線性分布,實驗結果與參考文獻[1]吻合,為理想置亂圖像差分直方圖模型的提出提供了理論基礎。

  在以后的研究工作中,重點應研究以自然圖像和理想置亂圖像統計特征為基礎的評價模型庫的建立,來解決缺乏統一評價標準的問題,完善置亂度的盲評價指標體系。相應的置亂度評價體系的發展也能對圖像置亂算法的研究起到重要的指導作用。

參考文獻

  [1] LIU L,ZHANG Q,WEI X.A RGB image encryption algo-rithm based on DNA encoding and chaos map[J].Computers& Electrical Engineering,2012,38(5):1240-1248.

  [2] EI-LATIF A A A,NIU X,WANG N.Chaotic image encryp-tion using bezier curve in DCT domain scrambling[C].Commun.Comput.Inform.Sci,2011:30-41.

  [3] 吳成茂,田小平.三維不等長Arnold變換及其在圖像置亂中的應用[J].計算機輔助設計與圖形學學報,2010,22(10):1831-1840.

  [4] 凌大旺,禹思敏.基于嵌入式系統的混沌數字圖像加密研究[J].電子技術應用,2012,38(3):20-22.

  [5] 張統權,何建農.基于混沌細胞自動機的圖像加密算法[J].微型機與應用,2013,32(22):44-47.

  [6] 王新新,布挺.基于圖像表面積的置亂程度評價算法[J].安徽大學學報:自然科學版,2011,35(4):48-52.

  [7] 劉家勝,朱燦焰,汪一鳴,等.基于位置相關性的圖像置亂效果評價方法[J].計算機工程,2010,36(24):208-210.

  [8] ZHAO L,ADHIKARI A,KOUICHI S.A new scrambling evaluation scheme based on spatial distribution entropy and centroid difference of bit-plane[Z].2011:29-44.

  [9] 王聰麗,陳志斌,薛明晰,等.基于圖像差分統計特性的圖像置亂度盲評價線性模型[J].計算機應用,2012,32(12):3470-3473.

  [10] 葉其孝,沈永歡.實用數學手冊(第2版)[M].北京:科學出版社,2006.


此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
激情av一区| 亚洲一级一区| 国产精品一区二区三区久久久| 欧美黄色一区二区| 久久亚洲色图| 久久午夜视频| 麻豆精品在线观看| 另类国产ts人妖高潮视频| 久久精品中文字幕一区二区三区| 午夜久久福利| 先锋a资源在线看亚洲| 亚洲午夜小视频| 亚洲伊人网站| 亚洲欧美日韩精品| 午夜亚洲福利在线老司机| 午夜精品视频在线| 久久国产一二区| 久久亚洲捆绑美女| 男人的天堂亚洲| 欧美精品乱码久久久久久按摩| 欧美激情亚洲精品| 欧美日韩国产综合一区二区| 欧美三级韩国三级日本三斤| 国产精品福利久久久| 国产精品午夜国产小视频| 国产精品日韩一区二区三区| 国产欧美一区二区精品忘忧草| 国产欧美日韩视频一区二区三区| 国产亚洲精品激情久久| 狠狠色狠狠色综合| 亚洲成色www8888| 亚洲乱码久久| 亚洲视频网站在线观看| 香蕉免费一区二区三区在线观看| 久久国产福利| 亚洲精品在线观看免费| 亚洲网站视频| 久久成人免费视频| 蜜桃av综合| 欧美日韩精品中文字幕| 国产精品久久久| 国产在线观看91精品一区| ●精品国产综合乱码久久久久| 亚洲精品免费看| 亚洲网站啪啪| 亚洲国产高清自拍| 宅男在线国产精品| 久久精品国产99精品国产亚洲性色| 麻豆精品视频在线观看| 欧美日韩亚洲天堂| 国产视频一区二区在线观看| 亚洲国产高清一区| 亚洲午夜在线观看| 久久精品视频网| 在线视频精品一区| 久久九九久精品国产免费直播| 麻豆国产精品va在线观看不卡| 欧美日韩不卡在线| 国产啪精品视频| 亚洲狠狠丁香婷婷综合久久久| 一区二区三区免费在线观看| 久久激情久久| 宅男66日本亚洲欧美视频| 久久国产精品网站| 欧美激情在线狂野欧美精品| 国产乱码精品一区二区三| 136国产福利精品导航| 亚洲视频免费在线| 亚洲人成网站色ww在线| 午夜一区在线| 欧美精品一区二区三区一线天视频 | av成人动漫| 欧美在线观看视频| 欧美日韩中文字幕在线视频| 国产私拍一区| 在线一区日本视频| 亚洲毛片av在线| 久久久久久9| 欧美日韩国产影院| 在线精品观看| 欧美一区二区日韩| 亚洲欧美国产精品桃花| 欧美精品一区二区三区蜜桃| 激情五月综合色婷婷一区二区| 亚洲在线免费观看| 亚洲视频电影图片偷拍一区| 免费视频亚洲| 好吊日精品视频| 亚洲女ⅴideoshd黑人| 一区二区三区视频在线看| 每日更新成人在线视频| 国产亚洲欧美日韩日本| 亚洲视频 欧洲视频| 一本色道久久综合一区| 欧美成人综合在线| 一区福利视频| 欧美一区在线看| 久久国产加勒比精品无码| 国产精品国产三级国产普通话三级| 亚洲欧洲另类| 亚洲精品国久久99热| 免费亚洲电影在线| 伊伊综合在线| 亚洲高清一区二区三区| 久久香蕉国产线看观看网| 国产亚洲精品bv在线观看| 亚洲欧美激情一区| 午夜影院日韩| 国产精品一区二区三区免费观看 | 美日韩精品免费| 好看的日韩av电影| 久久xxxx| 久久亚洲综合网| 精品不卡一区| 亚洲国产日韩欧美在线图片| 美女91精品| 亚洲国产精品黑人久久久| 最近中文字幕日韩精品| 毛片av中文字幕一区二区| 黄网动漫久久久| 91久久线看在观草草青青| 麻豆精品在线视频| 亚洲电影av| 亚洲人成小说网站色在线| 欧美福利视频| 亚洲麻豆av| 亚洲一区二区三区高清不卡| 国产精品高精视频免费| 亚洲一区在线免费| 久久成人国产| 精品成人一区二区| 亚洲精品婷婷| 欧美日韩一区在线| 亚洲一级电影| 久久久久久午夜| 在线观看91久久久久久| 亚洲欧洲日产国产网站| 欧美精品 日韩| 一区二区三区蜜桃网| 欧美一区二区三区视频在线 | 亚洲天堂免费观看| 欧美在线免费视屏| 国模私拍一区二区三区| 亚洲国产精品女人久久久| 欧美精品 国产精品| 一本综合久久| 久久高清免费观看| 亚洲第一网站| 亚洲图片自拍偷拍| 国产午夜久久久久| 亚洲精品一区中文| 国产精品高潮呻吟久久av黑人| 午夜天堂精品久久久久| 美女国产一区| 一本色道久久综合狠狠躁篇怎么玩| 欧美一激情一区二区三区| 在线播放亚洲| 亚洲一区二区网站| 国产一区在线视频| 亚洲精品在线视频观看| 国产精品男gay被猛男狂揉视频| 久久爱www.| 欧美日韩免费视频| 久久9热精品视频| 欧美日韩国产免费| 欧美一级大片在线观看| 欧美激情二区三区| 亚洲午夜高清视频| 乱人伦精品视频在线观看| 夜夜嗨av一区二区三区四区| 久久久国产精品亚洲一区| 亚洲精品国产精品国自产在线| 午夜在线一区| 亚洲人成网在线播放| 久久国产手机看片| 日韩视频在线观看一区二区| 久久精品国产亚洲精品| 日韩视频在线观看免费| 久久精品人人爽| 日韩系列欧美系列| 久久在线免费| 亚洲午夜羞羞片| 欧美国产免费| 久久国产成人| 国产精品乱码一区二区三区| 亚洲欧洲精品一区| 国产小视频国产精品| 在线中文字幕不卡| 激情亚洲成人| 欧美一区二区视频在线| 99精品欧美一区二区蜜桃免费| 久久婷婷av| 午夜国产不卡在线观看视频| 欧美日本在线| 亚洲精品美女91| 韩国一区电影| 久久国产婷婷国产香蕉| 一区二区成人精品| 欧美极品在线播放| 亚洲黄色在线观看|