《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 增益映射耦合局部正則化的圖像重構(gòu)算法
增益映射耦合局部正則化的圖像重構(gòu)算法
2016年電子技術(shù)應(yīng)用第3期
朱 莉
西安科技大學(xué) 計(jì)算機(jī)學(xué)院,陜西 西安710054
摘要: 針對(duì)當(dāng)前的圖像重構(gòu)方法在對(duì)多幀超分辨率圖像復(fù)原時(shí),存在明顯的模糊效應(yīng)與振鈴效應(yīng)的不足,提出增益映射控制耦合局部正則化的圖像重構(gòu)算法。首先,通過對(duì)低分辨率圖像中亞像素的移動(dòng)進(jìn)行分析,構(gòu)建高低分辨率圖像的成像模型, 再對(duì)超分辨率圖像進(jìn)行估值,將重構(gòu)問題轉(zhuǎn)化為一個(gè)不穩(wěn)定的線性方程式組;然后,構(gòu)造正則化算子,聯(lián)合改進(jìn)的代數(shù)重建法求其穩(wěn)定值;最后,采用基于局部自適應(yīng)正則化的增益可控方法建立增益映射,完成超分辨率圖像重構(gòu)。仿真結(jié)果表明,與當(dāng)前圖像重構(gòu)算法相比,在修復(fù)低分辨率圖像時(shí),該機(jī)制擁有更好的重構(gòu)效果,有效降低了模糊效應(yīng)與振鈴效應(yīng)。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2016.03.036
中文引用格式: 朱莉. 增益映射耦合局部正則化的圖像重構(gòu)算法[J].電子技術(shù)應(yīng)用,2016,42(3):127-131.
英文引用格式: Zhu Li. Super resolution image reconstruction algorithm based on gain map and local regularization[J].Application of Electronic Technique,2016,42(3):127-131.
Super resolution image reconstruction algorithm based on gain map and local regularization
Zhu Li
Collge of Computer,Xi′an University of Science and Technology,Xi′an 710054,China
Abstract: Owing to these defects such as blurring effect and ringing effect, caused by the current image reconstruction algorithm for the ill-posed multi-frame super-resolution image, this paper proposes an effective mechanism based on local adaptive regularization for image reconstruction. First, by analysis of the sub-pixel shifts in low-resolution image, the high and low resolution formation model is constructed, and by estimate an HR image, the reconstruction problems are transformed into an unstable linear equations. Then, a regularization operator is constructed, combined modified algebraic reconstruction technique for the solution of the linear equations. Finally, the gain control method based on local adaptive regularization is used to realize construction of gain map, and complete the SR image reconstruction. The simulation results show that comparing with current image reconstruction algorithm, the reconstruction performance of this mechanism is better, which effectively reduces the blurring effect and ringing effect under the condition of LR image.
Key words : image reconstruction;sub-pixel;regularization operator;local adaptive;gain map;super-resolution

0 引言

    由于成像環(huán)境不理想以及成像設(shè)備硬件分辨率有限等多種因素會(huì)導(dǎo)致圖像出現(xiàn)模糊、噪聲等問題,導(dǎo)致獲取不到超分辨率圖像[1]。故學(xué)者們提出了多幀超分辨率圖像重構(gòu)方法,利用低分辨率圖像序列間某種類別的附加信息進(jìn)行互補(bǔ)重構(gòu),獲取無(wú)法辨識(shí)的細(xì)節(jié)信息從而轉(zhuǎn)換成高分辨率圖像[2-3]。

    基于學(xué)習(xí)以及基于插值技術(shù)的重構(gòu)方法為目前較常用的超分辨率圖像重構(gòu)方法。如Ahmadreza[4]等人利用各向同性高斯濾波器,對(duì)輸入圖像像素的結(jié)構(gòu)張量進(jìn)行計(jì)算,再利用結(jié)構(gòu)張量插值法實(shí)現(xiàn)重構(gòu),實(shí)驗(yàn)表明該方法能獲得質(zhì)量較高的重構(gòu)圖像。賈茜[5]等人通過輪廓模板插值算法對(duì)低分辨率圖像進(jìn)行放大,然后將所得圖像用MCA模型分解,最后將處理后的圖像進(jìn)行合成,從而完成超分辨率圖像重構(gòu)。實(shí)驗(yàn)結(jié)果表明該方法有效提高了圖像銳度,重構(gòu)效果佳。雖然基于插值法的重構(gòu)算法實(shí)現(xiàn)快速易行,對(duì)超分辨率圖像重構(gòu)也有一定的效果,但由于插值過程所固有的平滑效應(yīng),導(dǎo)致得到的重構(gòu)圖像存在棋盤和振鈴效應(yīng)。

    對(duì)此,樊博[6]等人利用兩步迭代算法和全變分正則化實(shí)現(xiàn)超分辨率圖像重構(gòu),利用兩步迭代收縮得到新的估值,最后利用全變分實(shí)現(xiàn)重構(gòu),實(shí)驗(yàn)表明該算法能夠較好地實(shí)現(xiàn)圖像的重構(gòu)。首照宇[7]提出了一種改進(jìn)的基于字典的重構(gòu)算法,通過引入聯(lián)合訓(xùn)練思想確保高、低分辨率圖像具有相同的表示系數(shù),利用迭代反投影增強(qiáng)重建約束實(shí)現(xiàn)重構(gòu),實(shí)驗(yàn)結(jié)果顯示該方法具有較好的重構(gòu)效果。

    然而,此類算法都是基于學(xué)習(xí)的超分辨率方法,在重構(gòu)效果上較插值法都有所提高,但是由于計(jì)算的復(fù)雜性導(dǎo)致該類方法實(shí)現(xiàn)復(fù)雜,效率較低。

    對(duì)此,本文提出了增益映射控制耦合局部正則化的圖像重構(gòu)算法。首先,通過對(duì)低分辨率圖像中亞像素的移動(dòng)進(jìn)行分析;然后,構(gòu)造正則化算子,聯(lián)合改進(jìn)的代數(shù)重建法求其穩(wěn)定值;最后,采用基于局部自適應(yīng)正則化的增益可控方法,建立增益映射,完成超分辨率圖像重構(gòu),并測(cè)試本文算法的重構(gòu)性能。

1 圖像成像模型

    由于拍攝時(shí)相機(jī)的移動(dòng)等原因會(huì)導(dǎo)致亞像素平移的產(chǎn)生,從而使圖像變得不清晰[8-9]。圖1中表示了低分辨率圖像[βx,βy]中覆蓋3個(gè)亞像素沿水平和垂直方向平移的示意圖。

jsj5-t1.gif

jsj5-gs1-3.gif

jsj5-gs4-5.gif

2 超分辨率圖像的估值

jsj5-gs6-10.gif

    因?yàn)榉匠淌浇M式(10)存在病態(tài)特性,所以式(10)是不穩(wěn)定的,下面將對(duì)方程式組式(10)進(jìn)行求解。

3 迭代算法與正則化

    代數(shù)重建法(ART)屬于級(jí)數(shù)展開法的一種并得到了廣泛應(yīng)用[10]。ART利用L2范制定了相異度,并且對(duì)迭代后得到的每一個(gè)元素都進(jìn)行了更新。由于在進(jìn)行誤差估值時(shí)L1范比L2范有更好的效果,在此將ART中的相異度改進(jìn)為用L1范來(lái)制定,那么jsj5-3-x1.gif中第j個(gè)元素的第(n+1)次迭代的表達(dá)式如下:

    jsj5-gs11.gif

其中j=0,1,2…N-1,k=0,1,2,…K-1,Ak,j是Ak中的第j列元素。迭代參數(shù)β(n)表示第n次迭代的步長(zhǎng)。其中迭代次數(shù)n與低分辨率圖像指數(shù)k有關(guān),其關(guān)系為n=k/K。

    正則化被廣泛用在求解不穩(wěn)定線性方程組上,當(dāng)獲得數(shù)據(jù)的保真度很低時(shí),正則化過程很重要[11-13]。由于式(10)的不穩(wěn)定性導(dǎo)致高清圖像X的重構(gòu)存在不穩(wěn)定性,所以本文將用正則化耦合L1范的ART來(lái)得到改進(jìn)的ART,從而求解式(10)的穩(wěn)定解。

    一個(gè)獲得圖像重構(gòu)穩(wěn)定解的方法是保持圖像空間灰度的同質(zhì)性[14-15]。為了獲取該穩(wěn)定解,本文構(gòu)造一個(gè)正則化算子φ(X),根據(jù)高清圖像解法的先驗(yàn)知識(shí),可將正則化算子φ(X)與式(8)結(jié)合,可得到廣義的最小代價(jià)函數(shù):

jsj5-gs12-14.gif

jsj5-t2.gif

    由圖2可見,通過正則化耦合的ART算法迭代后所得圖像雖然有一定的重構(gòu)效果,但是還存在明顯的振鈴以及模糊效應(yīng)。下面將采用局部自適應(yīng)正則化的增益可控方法,建立增益映射,完成超分辨率圖像重構(gòu)。

4 局部自適應(yīng)正則化及增益映射的建立

    由于邊緣高對(duì)比度及振鈴大小與圖像梯度大小成正比,故本文采用自適應(yīng)技術(shù),使得被估計(jì)的高清圖像中,每個(gè)像素值的正則項(xiàng)和誤差項(xiàng)的關(guān)系由該像素值的局部信息來(lái)控制,從而克服振鈴效應(yīng)和模糊效應(yīng)。本文采用基于局部自適應(yīng)正則化的增益可控方法,建立增益映射,完成超分辨率圖像重構(gòu)。

jsj5-gs15-16.gif

    膨脹-腐蝕現(xiàn)象影響了原始圖像的邊緣強(qiáng)度,其中圖像的膨脹會(huì)帶來(lái)白噪聲的影響,圖像的腐蝕會(huì)帶來(lái)暗噪聲的影響。然而形態(tài)學(xué)開運(yùn)算和閉運(yùn)算,能夠在不影響圖像邊緣銳度的情況下分別移除白噪聲和暗噪聲[16-17]。故在此將構(gòu)造基于增益映射Ig的多尺度形態(tài)學(xué)。假設(shè)Q表示一個(gè)圓盤結(jié)構(gòu)元素單元,則rQ定義如下:

jsj5-gs17-23.gif

其中Zmax和Zmin為Z的最大和最小值,Sigmoid為一個(gè)邏輯函數(shù),定義如下:

    jsj5-gs24.gif

    (4)通過對(duì)Z的像素字典進(jìn)行排序,獲取對(duì)角元素,從而形成增益映射Ig。

    結(jié)構(gòu)元素大小的最大值m由估值圖像的對(duì)比度決定,隨著迭代的進(jìn)行,m將逐漸減少。

    圖3展示了本文算法的重構(gòu)效果對(duì)比圖,在此m的取值為4,圖3(a)為本文算法迭代1次后所得圖像,(b)為本文算法迭代10次后所得圖像。

jsj5-t3.gif

5 仿真結(jié)果與分析

    采用經(jīng)過模糊后的圖像作為低分辨率圖像,模糊算子H采用5×5的加權(quán)系數(shù),再將下采樣因子D為5的噪聲加入目標(biāo)圖像,最后所得被損壞圖像為彩色圖像和灰度圖像作為測(cè)試圖像,見圖4(a)、圖5(a)。通過借助MATLAB 7.10軟件來(lái)測(cè)試本文超分辨率圖像重構(gòu)機(jī)制,為了體現(xiàn)本文機(jī)制有效性與優(yōu)異性,將文獻(xiàn)[18]和文獻(xiàn)[19]的重構(gòu)方法作對(duì)照。

jsj5-t4.gif

5.1 不同機(jī)制對(duì)彩色圖像重構(gòu)的質(zhì)量對(duì)比分析

    圖4為不同圖像重構(gòu)機(jī)制對(duì)圖4(a)重構(gòu)后的效果圖??梢娫趯?duì)低分辨率彩色圖像重構(gòu)時(shí),本文機(jī)制的重構(gòu)質(zhì)量最佳,見圖4(d);而對(duì)照組的兩種圖像重構(gòu)算法重構(gòu)的圖像顯然存在振鈴和模糊效應(yīng),見圖4(b)和圖4(c)。原因是本文重構(gòu)機(jī)制采用自適應(yīng)技術(shù),使得被估計(jì)的高清圖像中,每個(gè)像素值的正則項(xiàng)和誤差項(xiàng)的關(guān)系由該像素值的局部信息來(lái)控制,從而克服振鈴效應(yīng)和模糊效應(yīng)。

5.2 不同機(jī)制對(duì)灰色圖像重構(gòu)的質(zhì)量對(duì)比

    從視覺效果圖對(duì)比可見,在對(duì)低分辨率灰色圖像重構(gòu)時(shí),本文機(jī)制的重構(gòu)質(zhì)量最佳,見圖5(d),圖像清晰度較好;而對(duì)照組的兩種圖像重構(gòu)算法的復(fù)原圖像質(zhì)量不佳,分別見圖5(b)與圖5(c),較為模糊,喪失了部分紋理信息。

jsj5-t5.gif

5.3 量化分析

    將不同程度的噪聲加入到圖4的低分率圖像中,然后用不同重構(gòu)算法來(lái)處理這些圖像,最后通過得到的PSNR來(lái)對(duì)不同機(jī)制的重構(gòu)效果進(jìn)行量化分析,PSNR量化圖如圖6所示。從圖中可見,本文重構(gòu)機(jī)制優(yōu)于對(duì)照組的機(jī)制,原因是本文采用了基于增益映射Ig的多尺度形態(tài)學(xué),能夠在不影響圖像邊緣銳度的情況下分別移除白噪聲和暗噪聲,從而保持了邊緣銳度提高了PSNR,保持了圖像的結(jié)構(gòu)相似度。

jsj5-t6.gif

6 結(jié)論

    本文提出了基于局部自適應(yīng)正則化的圖像重構(gòu)算法。通過對(duì)低分辨率圖像中亞像素的移動(dòng)進(jìn)行分析,確定高低分辨率圖像間的形成模型, 將重構(gòu)問題轉(zhuǎn)化為一個(gè)不穩(wěn)定的線性方程式組;然后構(gòu)造正則化算子,聯(lián)合改進(jìn)的代數(shù)重建法求其穩(wěn)定值;最后采用基于局部自適應(yīng)正則化的增益可控方法,完成超分辨率圖像重構(gòu)。仿真結(jié)果表明,本文機(jī)制擁有更好的重構(gòu)效果,有效降低了模糊與振鈴效應(yīng)。

參考文獻(xiàn)

[1] CHENG P,QIU Y Y,ZHAO K,et al.A transductive graphical model for single image super-resolution[J].Elsevier Neurocomputing,2015,148(1):376-387.

[2] POLATKAN G,BLEI D,DAUBECHIES I.A bayesian nonparametric approach to image super-resolution[J].Pattern Analysis and Machine Intelligence,2015,37(2):346-358.

[3] ROYLE S J.Super-duper resolution imaging of mitotic microtubules[J].Nature Reviews Molecular Cell Biology,2015,16(2):67-76.

[4] BAGHAIE A,Yu Zeyun.Structure tensor based image interpolation method[J].AEU Electronics and Communications,2015,69(2):515-522.

[5] 賈茜,易本順,肖進(jìn)勝.基于結(jié)構(gòu)成分雙向擴(kuò)散的圖像插值算法[J].電子與信息學(xué)報(bào),2014,36(11):2541-2548.

[6] 樊博,楊曉梅,胡學(xué)姝.基于壓縮感知的超分辨率圖像重建[J].計(jì)算機(jī)應(yīng)用,2013,33(2):480-483.

[7] 首照宇,廖敏璐,陳利霞.改進(jìn)的基于稀疏表示的圖像超分辨率重建算法[J].計(jì)算機(jī)應(yīng)用與軟件,2014,31(4):201-204.

[8] XUN Z J.A fixed-point method for a class of super-large scale nonlinear complementarities problems[J].Computers & Mathematics with Applications,2014,67(5):999-1015.

[9] MAISELI B,ALLY N,Gao Huijun.A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method[J].Signal Processing,2015(34):1-13.

[10] PRUN V E,NIKOLAEV D P,BUZMAKOV A V,et al.Effective regularized algebraic reconstruction technique for computed tomography[J].Crystallography Reports,2013,58(7):1063-1066.

[11] 張曉克,許建剛.超分辨率圖像重建技術(shù)研究[J].科技創(chuàng)新與應(yīng)用,2014,32(11):68-69.

[12] 劉哲,張永亮,郝珉慧.一種快速的超分辨率圖像重構(gòu)算法[J].光電子.激光,2013,24(2):372-377.

[13] PENG H,RAO R,DIANAT S.Multispectral image denoising with optimized vector bilateral filter[J].Image Process,2014,23(1):264-273.

[14] KYUNGSHIN D,SHIKMOON Y.Super-resolution image reconstruction using wavelet based patch and discrete wavelet transform[J].Journal of Signal Processing Systems,2015,81(1):71-81.

[15] SALGADO C,DOLUI S,MICHAILOVICH V.Reconstruction of hardy data using a split Bergman optimization approach[J].Image Analysis and Recognition,2013,50(1):589-596.

[16] KUMAR B K S.Image fusion based on pixel significance using cross bilateral filter[J].Image and Video Processing,2013,5(9):1193-1204.

[17] YIN W,OSHER S,GOLDFARB D,et al.Bregman iterative algorithms for L1-minimization with applications to compressed sensing[J].SIAM J Image Science,2008,1(1):143-168.

[18] WUNDERLI T.Total variation time flow with quantile regression for image restoration[J].Mathematical Analysis and Applications,2013,403(1):272-282.

[19] ZHOU L,LU X B,XUE T.A local structure adaptive super-resolution reconstruction method based on BTV regularization[J].Multimedia Tools and Applications,2014,71(3):1879-1892.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲欧洲精品一区| 亚洲自拍三区| 国产欧美一区二区三区国产幕精品 | 中文精品视频| 日韩一级在线| 亚洲美女色禁图| 91久久在线视频| 亚洲国产精品日韩| 亚洲电影天堂av| 亚洲大片免费看| 亚洲大片精品永久免费| 久久精品国产v日韩v亚洲| 久久国产66| 亚洲国产精品v| 亚洲丶国产丶欧美一区二区三区| 欧美中文在线字幕| 欧美尤物巨大精品爽| 欧美亚洲在线观看| 性18欧美另类| 欧美中文字幕视频| 久久狠狠亚洲综合| 久久精品一区二区三区不卡| 久久精品国产成人| 亚洲黄色有码视频| 亚洲精品一品区二品区三品区| 91久久夜色精品国产网站| 最近看过的日韩成人| 日韩视频一区二区在线观看 | 国产精一区二区三区| 国产婷婷成人久久av免费高清 | 国语自产精品视频在线看抢先版结局 | 亚洲国产精品久久久久秋霞蜜臀| 亚洲国产裸拍裸体视频在线观看乱了中文 | 久久久999精品| 可以看av的网站久久看| 欧美电影资源| 国产精品www994| 国产亚洲欧洲997久久综合| 狠狠色噜噜狠狠色综合久| 亚洲国产mv| 日韩午夜在线| 亚洲欧美日韩人成在线播放| 久久国产夜色精品鲁鲁99| 亚洲精选中文字幕| 亚洲欧美日韩另类精品一区二区三区| 欧美在线不卡视频| 免费永久网站黄欧美| 欧美精品免费在线| 国产精品久久一级| 狠狠色狠狠色综合日日tαg| 亚洲毛片在线免费观看| 亚洲视频在线观看| 久久av红桃一区二区小说| 日韩午夜在线| 小嫩嫩精品导航| 麻豆精品在线视频| 欧美亚洲第一区| 韩国av一区二区三区| 亚洲精品国产精品国产自| 亚洲午夜电影网| 亚洲国产欧美一区二区三区同亚洲 | 亚洲视屏在线播放| 久久精品免费电影| 亚洲私拍自拍| 久久久在线视频| 欧美视频在线看| 激情视频亚洲| 一区二区三区四区五区精品| 亚洲第一网站| 小黄鸭精品aⅴ导航网站入口| 欧美成人三级在线| 国产精品一国产精品k频道56| 亚洲国产精品va在线看黑人动漫 | 性欧美video另类hd性玩具| 日韩午夜免费| 久久久久99精品国产片| 欧美精品一区在线播放| 国产亚洲精久久久久久| 亚洲免费成人| 亚洲高清自拍| 欧美一区亚洲二区| 欧美喷潮久久久xxxxx| 国产一区二区三区黄视频| 9l国产精品久久久久麻豆| 亚洲第一在线综合网站| 欧美亚洲一级片| 欧美极品欧美精品欧美视频| 国产一区91精品张津瑜| 制服丝袜亚洲播放| 亚洲精品国产精品乱码不99按摩| 欧美一区二区在线免费观看 | 99视频精品全部免费在线| 亚洲国产清纯| 欧美在线观看视频| 欧美性天天影院| 日韩亚洲精品视频| 亚洲激情在线播放| 久久久成人精品| 国产精品丝袜久久久久久app| 99国产精品久久久久久久成人热| 亚洲国产精品福利| 久久久精品免费视频| 国产精品区一区二区三| 99综合精品| 一区二区高清视频在线观看| 欧美99久久| 黄色另类av| 欧美在线观看天堂一区二区三区| 亚久久调教视频| 国产精品福利片| 一区二区三区欧美成人| av成人免费在线观看| 欧美bbbxxxxx| 亚洲国产精品视频一区| 91久久中文| 欧美黄色免费网站| 亚洲国产日韩欧美在线动漫| 亚洲国产日韩欧美在线动漫| 久久视频在线看| 黑人中文字幕一区二区三区| 欧美一区二区三区视频免费| 欧美在线视频观看免费网站| 国产精品网红福利| 亚洲欧美自拍偷拍| 欧美一区二区三区久久精品 | 国产一区二区三区高清播放| 欧美一区二区久久久| 久久精品国产一区二区三| 国产午夜精品福利| 欧美一区二区三区四区在线观看地址 | 国产亚洲aⅴaaaaaa毛片| 性久久久久久| 久久久亚洲精品一区二区三区| 国内精品美女av在线播放| 亚洲高清自拍| 欧美国产极速在线| 亚洲国产一区二区三区高清| 99综合视频| 国产精品久久久久秋霞鲁丝| 亚洲影音一区| 久久久久久久网站| 极品少妇一区二区三区| 亚洲欧洲视频| 欧美人成在线视频| 一本色道久久综合狠狠躁篇怎么玩| 亚洲性夜色噜噜噜7777| 国产免费一区二区三区香蕉精| 午夜精品在线| 免费91麻豆精品国产自产在线观看| 亚洲片国产一区一级在线观看| 亚洲午夜黄色| 国产亚洲成年网址在线观看| 亚洲福利免费| 欧美日韩伦理在线免费| 亚洲在线国产日韩欧美| 狂野欧美激情性xxxx| 亚洲精品中文字幕女同| 午夜精品理论片| 在线播放中文一区| 亚洲桃花岛网站| 国产主播一区二区| 日韩午夜免费视频| 国产精品日韩在线观看| 亚洲第一精品福利| 欧美日韩国产系列| 羞羞漫画18久久大片| 欧美成人精品| 亚洲一二区在线| 美女主播视频一区| 一区二区三区国产在线| 久久久国产精彩视频美女艺术照福利| 1024日韩| 午夜精品福利一区二区三区av| 一区二区三区中文在线观看| 亚洲一区二区伦理| 精品不卡一区| 亚洲自拍偷拍视频| 激情久久久久久久| 亚洲一区影音先锋| 国语自产精品视频在线看8查询8| 一本色道久久综合狠狠躁篇的优点| 国产欧美一区二区三区久久| 日韩视频精品| 国产偷国产偷亚洲高清97cao| 日韩午夜电影在线观看| 国产午夜精品福利| 亚洲小视频在线| 1024成人| 久久激情婷婷| 一本色道久久综合狠狠躁篇的优点| 久久久久成人精品免费播放动漫| 亚洲精品一区中文| 麻豆成人在线| 香蕉精品999视频一区二区| 欧美激情亚洲另类| 久久成人羞羞网站| 国产精品日日摸夜夜添夜夜av| 亚洲国产日韩综合一区| 国产精品日韩欧美一区| av成人免费在线观看|