《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 基于EOG的睡眠分期研究
基于EOG的睡眠分期研究
2016年微型機與應用第13期
王丹丹,夏斌
(上海海事大學, 上海 201306)
摘要: 隨著模式識別技術的發展與應用,睡眠自動分期方法正在逐漸取代手動分期研究。文章使用深度置信網絡(Deep Belief Network, DBN)和長短時記憶遞歸神經網絡(Long ShortTerm Memory Recurrent Neural Network, LSTMRNN)這兩種方法對眼電(Electrooculogram, EOG)通道的數據進行睡眠自動分期。LSTMRNN方法(平均準確率83.4%)相對DBN(平均準確率75.6%)在基于眼電信號的睡眠分期問題上取得了更好的效果。
Abstract:
Key words :

  王丹丹,夏斌

  (上海海事大學, 上海 201306)

  摘要:隨著模式識別技術的發展與應用,睡眠自動分期方法正在逐漸取代手動分期研究。文章使用深度置信網絡(Deep Belief Network, DBN)和長短時記憶遞歸神經網絡(Long ShortTerm Memory Recurrent Neural Network, LSTMRNN)這兩種方法對眼電(Electrooculogram, EOG)通道的數據進行睡眠自動分期。LSTMRNN方法(平均準確率83.4%)相對DBN(平均準確率75.6%)在基于眼電信號的睡眠分期問題上取得了更好的效果。

  關鍵詞:DBN;LSTM-RNN;睡眠自動分期;EOG

0引言

  睡眠與人的健康息息相關。充足的睡眠可以消除疲勞,保證日常生活的正常進行,但是由于生活節奏的加快和壓力的增大,現代人通常都存在不同程度的睡眠障礙。有調查顯示,成年人存在睡眠障礙的比例高達30%。睡眠障礙會導致大腦功能紊亂,對身體造成多種危害,嚴重影響身心健康。因此對睡眠狀況進行研究,了解睡眠質量,可以及早地診斷和治療隱藏疾病。睡眠分期是將睡眠過程分為不同的狀態。根據參考文獻[1],睡眠過程分為三種狀態:清醒狀態(Awake)、非眼球快速運動睡眠狀態(NonRapid Eye Movements, NREMS)和眼球快速運動睡眠狀態(Rapid Eye Movements, REMS)。其中NREMS細分為四個狀態:S1~S4,分別代表淺度睡眠、輕度睡眠、中度睡眠和深度睡眠。

  睡眠分期的方法主要有兩類:一類是基于R&K準則,需要經驗豐富的專家對數據進行目測分類,這種方法不僅耗時費力,而且易受專家主觀因素影響。另一類是睡眠的自動分期方法,其用模式識別算法自動對數據提取特征和進行分類。目前使用較多的有支持向量機(Support Vector Machine, SVM)、隨機森林(Random Forest)、人工神經網絡等。

  由于深度學習可以自動提取特征,通過組合低層特征形成更加抽象的高層特征[2],因此本文利用兩種深度學習網絡分別對EOG進行分期研究,并對分期結果進行比較。

1方法概述

  1.1深度置信網絡

  深度置信網絡(Deep Belief Network,DBN)是Hinton在2006年提出的[3]。它由一系列受限玻爾茲曼機(Restricted Boltzmann Machines, RBM)組成。DBN網絡的核心思想是將RBM堆疊在一起,訓練出權值,將這個權值作為神經網絡權值的初始值,再用經典的梯度法去訓練網絡。本文中用到的DBN結構如圖1所示。DBN網絡共有5層:輸入層、3個隱層、標簽層。隱層的單元個數分別為500、200、100。DBN的訓練過程包括三步:(1) RBM的訓練,需將數據劃分為小批量的數據,HINTON G E在參考文獻[4]中提出小批量數據的大小minibatche設置為10~100,本文中設置為60,訓練迭代次數epoch設為10。 (2)將RBM訓練得到的權重作為DBN網絡的初始值進行訓練。設置minibatche為1 000,epoch為30。(3)進行有監督微調,學習率設置為0.03。

  

001.jpg

  1.2長短時記憶遞歸神經網絡

  將每個受試的EOG數據看做一個序列,由于序列節點之間存在時序相關性,因此預測模型要具有記憶功能,能夠包含序列的遠距離信息。而遞歸神經網絡(Recurrent Neural Network,RNN)恰好滿足這一要求。RNN含有從單元的輸出到單元的輸入的連接(即含有遞歸連接),因此可以利用其內部的記憶來處理具有時序的輸入序列。然而,傳統的RNN存在梯度消失和梯度激增的問題,導致遠距離的信息不能有效地被利用。為了解決這一問題,HOCHREITER S和SCHMIDHUBER J在1997年提出了一種新的RNN網絡——長短時記憶遞歸神經網絡(LSTMRNN),它使用記憶模塊取代傳統RNN的隱層單元,通過記憶細胞內部狀態的自反饋和輸入輸出門對誤差的截斷,解決了梯度消失和激增的問題。LSTMRNN可以學習長度超過1 000的序列[5]。本文中使用的是具有忘記門的記憶模塊,結構如圖2所示。

002.jpg

  LSTM層的權重的計算主要包括兩個過程:前向傳播和后向傳播。

  Xt表示t時刻的輸入向量,W表示輸入權重矩陣,R表示遞歸權重矩陣,b表示偏置單元。門的激活函數σ通常指的是sigmoid函數。記憶細胞的輸入輸出激活函數(g和h)通常是tanh函數。E表示損失函數,兩個向量之間的點乘用“·”表示。

  前向傳播就是依次按照順序計算模塊內部各個組成部分的輸入輸出直至得到記憶模塊的輸出。

  模塊輸入:

  zt=g(WzXt+Rzyt-1+bz)(1)

  輸入門輸出:

  it=σ(WiXt+Riyt-1+bi)(2)

  忘記門輸出:

  ft=σ(WfXt+Rfyt-1+bf)(3)

  記憶細胞輸出:

  ct=zt·it+ct-1·ft(4)

  輸出門輸出:

  ot=σ(WoXt+Royt-1+bo)(5)

  模塊輸出:

  yt=h(ct)·ot(6)

  后向過程就是從最后一個時間將積累的殘差E傳遞回來。在此過程中采用的是BPTT[6](Back Propagation Through Time)算法。

003.jpg

  在本文中,將每30 s的數據作為一個時間步長進行輸入,輸出長度為6的向量,因此使用到LSTMRNN的網絡結構如圖3所示,其中TimeDistributedDense層是一個基于時間維度的全連接層。學習率和網絡單元個數是圖3LSTMRNN 網絡模型網絡的最重要的參數,而且各參數之間的調整可以看做是獨立的[7],因此可以獨立地對各個參數進行調優。最終參數的設置為第一層全連接層單元數為500,兩層LSTM的單元個數為200、100,最后一層全連接層與第一層全連接層單元相同但是單元數設為6,batchsize為1,迭代次數epoch為128,學習率為0.003。

2實驗數據

  本文用到的數據是圖賓根大學采集到的9名受試者晚上的睡眠數據,他們的平均年齡為23.5歲,其中包括3名女性。在實驗前的6周,要求受試者們保持規律的作息時間并禁止喝咖啡。在本項研究中使用EOG通道,信號的采樣率是500 Hz,專家將每30 s的數據對應于一個標簽。由于本文對數據做6分類(AWAKE、S1、S2、S3、S4、REM)分析,因此只保留此6個狀態的數據。首先對數據進行預處理操作:(1)去除兩個不同狀態轉換時對應的數據,得到處理后各子類數據比例如表1所示。(2)將數據進行快速傅里葉變換,取0.5~35 Hz之間的頻域數據。(3)進行歸一化后得到用于分期的數據。表1處理后睡眠數據各子類比例狀態Awake S1S2S3S4REM百分比/%5.600.8154.256.2011.9821.16

005.jpg

3實驗結果

  本文中使用留一驗證的方法,圖4展示了每個受試者DBN和LSTMRNN的分類結果。表2和表3展示的是兩種方法對應的混淆矩陣。通過分析結果可以得到以下結論:(1)EOG數據可以用作睡眠分期研究。(2)DBN和LSTMRNN在睡眠分期研究中都取得了較好的結果,但是LSTMRNN無論是在每個受試者的準確率還是在每個狀態的分類準確率上都要優于DBN。(3)在混淆矩陣中,S2、S4和REM的準確率比其他狀態的準確率高,這與處于S2、S4、REM狀態的數據在總數據中占得比例較高和各個狀態具有相似特征有關。

 

004.jpg

006.jpg

4結論

  本文通過基于EOG通道的睡眠分期研究可以得出,DBN和LSTMRNN作為睡眠自動分期方法,可以很好地自動提取特征并進行分類,在處理時序序列的分類時,LSTMRNN可以更好地利用長距離信息對睡眠數據進行分期,其分類效果優于DBN。

參考文獻

  [1] RECHTSCHAFFEN A,KALES A. A manual of standardized terminology,techniques and scoring system for sleep stages of human subjects[M]. Los Angeles: Brain Information Service/Brain Research Institute,1977.

  [2] BENGIO Y,DELALLEAU O. On the expressive power of deep architectures[C].Proc of the 14th International Conference on Discovery Science. Berlin: SpringVerlag,2011:1836.

  [3] HINTON G E,OSIJDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7) :15271554.

  [4] HINTON G E. A practical guide to training restricted Boltzmann machines[J].Momentum,2010, 9(1):599619.

  [5] HOCHREITER S, SCHMIDHUBER J. Long shortterm memory[J].Neural Computation, 1997,9(8):17351780.

  [6] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin: Springer, 2012.

  [7] GREFF K, SRIVASTAVA R K,KOUTNI'K J,et al. LSTM:a search space odyssey[J/OL]. arXiv preprint. (20150313)[20160301].http://arxiv.org/abs/1503.04069.


此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
欧美一区1区三区3区公司| 一区二区三区四区国产精品| 欧美精品在线观看91| 久久青青草综合| 欧美一级艳片视频免费观看| 亚洲在线视频| 亚洲午夜久久久久久久久电影网| 亚洲精品视频在线| 最新日韩在线| 亚洲国产婷婷香蕉久久久久久99 | 亚洲桃色在线一区| 一区二区久久| 一区二区日韩欧美| 夜夜嗨av一区二区三区网站四季av | 欧美高清视频一区二区三区在线观看| 久久久91精品| 久久激情中文| 久久免费视频网站| 久久久蜜桃一区二区人| 久久嫩草精品久久久精品一| 久久久综合香蕉尹人综合网| 免费成人av资源网| 欧美+亚洲+精品+三区| 女人天堂亚洲aⅴ在线观看| 麻豆九一精品爱看视频在线观看免费| 久久亚洲风情| 欧美成人亚洲成人日韩成人| 欧美激情精品久久久久久大尺度| 欧美精品播放| 欧美色精品在线视频| 国产精品成人v| 国产精品亚洲一区| 国产视频一区二区在线观看 | 一区二区三欧美| 亚洲欧美日本精品| 欧美一区观看| 亚洲欧洲精品一区二区三区波多野1战4 | 亚洲欧洲一区二区天堂久久| 亚洲精品影院| 亚洲一区二区三区激情| 午夜久久黄色| 久久久午夜电影| 欧美大片在线看免费观看| 欧美精品在线网站| 国产精品二区三区四区| 国产日韩欧美一区在线| 亚洲第一在线| 一本一本a久久| 午夜精品久久| 亚洲黄色大片| 亚洲在线一区二区三区| 久久精品视频在线观看| 男人的天堂成人在线| 欧美日韩不卡合集视频| 国产精品日本| 尤物视频一区二区| av成人黄色| 欧美在线观看一区二区| 亚洲精品少妇30p| 午夜精品一区二区三区在线| 免费欧美日韩国产三级电影| 欧美性猛交xxxx乱大交退制版| 国产区欧美区日韩区| 亚洲人成网站精品片在线观看| 亚洲午夜一区二区| 亚洲黄色影院| 亚洲欧美一区二区在线观看| 蜜桃伊人久久| 国产精品亚洲人在线观看| 亚洲国产精品一区二区第四页av| 亚洲一级黄色av| 亚洲区国产区| 久久精品99国产精品| 欧美日韩国产综合久久| 狠狠色丁香久久婷婷综合_中| 日韩一级二级三级| 亚洲国产婷婷| 欧美一区二区三区精品| 欧美精品免费视频| 韩国精品一区二区三区| 99爱精品视频| 最新国产乱人伦偷精品免费网站| 欧美一激情一区二区三区| 欧美日韩ab| 永久555www成人免费| 亚洲综合欧美日韩| 一区二区三区久久网| 久久夜色精品国产欧美乱极品| 国产精品久久久久999| 亚洲人成精品久久久久| 欧美一区二区在线免费观看| 亚洲欧美色一区| 欧美久久久久久| 亚洲高清资源| 伊人狠狠色丁香综合尤物| 欧美日韩第一区| 老牛嫩草一区二区三区日本| 亚洲网站视频| 亚洲国内自拍| 在线亚洲欧美专区二区| 欧美大片在线观看一区| 欧美日韩不卡在线| 蜜桃av综合| 久久性天堂网| 你懂的国产精品永久在线| 久久久久久色| 欧美在线观看视频一区二区| 久久精品视频导航| 日韩午夜电影| 国产日本欧美一区二区三区在线 | 欧美一区二区成人| 国产精品国码视频| 久久久午夜精品| 亚洲精选一区二区| 久久成人免费视频| 亚洲国产日韩欧美| 国产精品伦理| 欧美日韩成人综合天天影院| 久久久国产精品一区| 国产农村妇女毛片精品久久麻豆| 在线一区二区三区四区| 好看的日韩视频| 国产一区二区av| 亚洲大片精品永久免费| 亚洲国产日韩欧美| 91久久综合亚洲鲁鲁五月天| 亚洲日本中文字幕| 亚洲精品国产拍免费91在线| 亚洲电影毛片| 亚洲人成在线播放| 宅男66日本亚洲欧美视频| 日韩网站在线| 久久岛国电影| 国产日韩一区在线| 精品成人在线| 日韩一级大片| 小处雏高清一区二区三区| 久久狠狠一本精品综合网| 久久精品一级爱片| 中文av一区特黄| 欧美在线视频日韩| 久久综合久久综合九色| 国产喷白浆一区二区三区| 国产老女人精品毛片久久| 国产精品一区二区男女羞羞无遮挡| 老司机久久99久久精品播放免费| 老司机精品视频一区二区三区| 欧美精品久久久久a| 欧美亚一区二区| 在线观看日韩| 亚洲欧美激情在线视频| 最近看过的日韩成人| 欧美亚洲一区二区三区| 欧美jizzhd精品欧美巨大免费| 国产精品乱码人人做人人爱| 亚洲麻豆一区| 久久国产福利国产秒拍| 欧美午夜剧场| 亚洲一区中文字幕在线观看| 亚洲一区3d动漫同人无遮挡| 国产欧美日韩伦理| 99国产麻豆精品| 亚洲国产美女精品久久久久∴| 欧美一区二区三区四区高清 | 久久久噜噜噜久噜久久| 欧美午夜不卡视频| 尤物九九久久国产精品的特点 | 欧美午夜寂寞影院| 国产一区二区三区免费不卡| 亚洲欧美中文日韩v在线观看| 亚洲专区一二三| 欧美人成免费网站| 久久精品国产欧美亚洲人人爽| 国内精品**久久毛片app| 亚洲一区二区成人| 国产私拍一区| 午夜精品久久久99热福利| 欧美一区二区三区免费视频| 国产一区二区你懂的| 久久久噜噜噜| 亚洲第一色中文字幕| 久久久之久亚州精品露出| 国产小视频国产精品| 在线性视频日韩欧美| 在线亚洲伦理| 欧美精品一区在线发布| 一区二区欧美日韩| 久久国产精品99国产| 亚洲精品老司机| 久久久女女女女999久久| 欧美日韩理论| 亚洲国产视频直播| 午夜精品免费视频| 久久久xxx| 黄色成人91| 亚洲精品资源| 欧美成人午夜| 亚洲国产精品成人精品| 一区二区三区国产| 国产欧美精品|