《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 利用非重疊CD生成解的集成重疊社區(qū)檢測(cè)
利用非重疊CD生成解的集成重疊社區(qū)檢測(cè)
2019年電子技術(shù)應(yīng)用第12期
陳吉成,陳鴻昶,李邵梅
國(guó)家數(shù)字交換系統(tǒng)工程技術(shù)研究中心,河南 鄭州450002
摘要: 為了更便捷準(zhǔn)確地進(jìn)行重疊社區(qū)檢測(cè),考慮從多個(gè)非重疊社區(qū)結(jié)構(gòu)中推斷出重疊社區(qū),提出一種集成重疊社區(qū)檢測(cè)(IOCD)算法。首先,根據(jù)基礎(chǔ)社區(qū)檢測(cè)(CD)算法的結(jié)果為每個(gè)頂點(diǎn)生成一個(gè)特征向量,通過(guò)這些特征以無(wú)監(jiān)督學(xué)習(xí)的方式檢測(cè)密集連接的重疊區(qū)域,即利用非重疊CD解來(lái)提取與每個(gè)頂點(diǎn)相關(guān)聯(lián)的隱性特征信息;然后,不斷迭代,最大化每個(gè)頂點(diǎn)屬于其自身社區(qū)的可能性。在合成網(wǎng)絡(luò)和真實(shí)社區(qū)網(wǎng)絡(luò)數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,在3個(gè)標(biāo)準(zhǔn)度量下,所提IOCD算法明顯優(yōu)于其他同類算法,幾乎不受基礎(chǔ)CD算法的影響。
中圖分類號(hào): TN915.9;TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.190704
中文引用格式: 陳吉成,陳鴻昶,李邵梅. 利用非重疊CD生成解的集成重疊社區(qū)檢測(cè)[J].電子技術(shù)應(yīng)用,2019,45(12):96-100,105.
英文引用格式: Chen Jicheng,Chen Hongchang,Li Shaomei. Integrated overlapping CD method using existing solutions of non-over-lapping CD[J]. Application of Electronic Technique,2019,45(12):96-100,105.
Integrated overlapping CD method using existing solutions of non-overlapping CD
Chen Jicheng,Chen Hongchang,Li Shaomei
China National Digital Switching System Engineering & Technological R & D Center(NDSC),Zhengzhou 450002,China
Abstract: To detect overlapping communities more conveniently and accurately, an integrated overlapping community detection(IOCD) algorithm is proposed, which considers inferring overlapping communities from multiple non-overlapping community structures. Firstly, an eigenvector is generated for each vertex according to the results of the basic community detection(CD) algorithm. These features are used to detect the overlapping regions with dense connections in an unsupervised learning manner. That is to say, non-overlapping CD solutions are used to extract the implicit feature information associated with each vertex. Then, some iterations are made to maximize the possibility that each vertex belongs to its own community. Experiments on synthetic network and real community network datasets show that the proposed IOCD algorithm is superior to other similar algorithms under three standard metrics, and is almost unaffected by the basic CD algorithm.
Key words : community detection;overlapping community;non-overlapping community;vertex;synthetic network

0 引言

    現(xiàn)實(shí)世界網(wǎng)絡(luò)具有復(fù)雜性、高維性和多面性,其基本屬性是網(wǎng)絡(luò)的“社區(qū)結(jié)構(gòu)”,通常假定為社交網(wǎng)絡(luò)中的組織單元[1]、引文網(wǎng)絡(luò)中的科研社區(qū)[2]等。雖然社區(qū)檢測(cè)(CD)的研究較早,但其依然是個(gè)具有挑戰(zhàn)性的復(fù)雜問(wèn)題,主要體現(xiàn)在:(1)CD問(wèn)題沒(méi)有明確的定義,針對(duì)同一個(gè)網(wǎng)絡(luò)可以得到多個(gè)解,且每個(gè)解都有其自身的重要意義;(2)現(xiàn)實(shí)世界網(wǎng)絡(luò)的頂點(diǎn)常屬于多個(gè)社區(qū)[3-4],導(dǎo)致重疊的社區(qū)結(jié)構(gòu)。

    傳統(tǒng)的CD算法大多假定社區(qū)是非重疊的,如基于頂點(diǎn)相似性的算法[5]、基于顯著性的算法[6]、基于模塊優(yōu)化的算法[7]等。在現(xiàn)實(shí)世界中,一個(gè)頂點(diǎn)屬于多個(gè)社區(qū),從而產(chǎn)生重疊社區(qū)結(jié)構(gòu)。因此也有一些重疊CD算法,如文獻(xiàn)[8]提出了基于擴(kuò)展激活的標(biāo)簽傳播算法(LPAEA),用于動(dòng)態(tài)社交網(wǎng)絡(luò)中的重疊社區(qū)檢測(cè);文獻(xiàn)[9]加強(qiáng)了節(jié)點(diǎn)自身的內(nèi)容特性,提出了增廣網(wǎng)絡(luò)的CD算法。

    此外,在數(shù)據(jù)挖掘中,也經(jīng)常利用集成方法進(jìn)行數(shù)據(jù)點(diǎn)聚類。如文獻(xiàn)[10]將CD問(wèn)題建模為一個(gè)單目標(biāo)優(yōu)化問(wèn)題,提出了一個(gè)新的Memetic算法,通過(guò)優(yōu)化模糊度評(píng)價(jià)指標(biāo)檢測(cè)復(fù)雜網(wǎng)絡(luò)中的重疊社區(qū)結(jié)構(gòu),并使用“一致續(xù)存”度量來(lái)修改給定的非重疊社區(qū)結(jié)構(gòu);文獻(xiàn)[11]提出的集成算法MEDOC使用了元社區(qū)的概念,利用基礎(chǔ)非重疊社區(qū)結(jié)構(gòu)來(lái)創(chuàng)建多分體網(wǎng)絡(luò),通過(guò)隸屬函數(shù)來(lái)確定頂點(diǎn)對(duì)社區(qū)的隸屬性。

    由于非重疊CD算法會(huì)從一個(gè)網(wǎng)絡(luò)中生成大量(且顯著不同的)社區(qū)結(jié)構(gòu),本文利用該信息來(lái)提取與每個(gè)頂點(diǎn)相關(guān)聯(lián)的隱性特征信息,提出了一種集成重疊社區(qū)檢測(cè)方法(IOCD),充分利用了非重疊CD的生成解。實(shí)驗(yàn)結(jié)果表明,所提IOCD的性能優(yōu)秀,框架具有良好的通用性。因此,在網(wǎng)絡(luò)拓?fù)洳煌暾⒈举|(zhì)上具有稀疏性且頂點(diǎn)屬性可用的情況下,可利用所提框架將特征合并到模型中以進(jìn)行重疊社區(qū)檢測(cè)。

1 提出的算法概況

jsj1-1-x1.gif

jsj1-1-x2.gif

jsj1-b1.gif

    本文設(shè)計(jì)IOCD算法,以最大化社區(qū)內(nèi)每個(gè)節(jié)點(diǎn)的隸屬可能性。IOCD首先在網(wǎng)絡(luò)上以不同的頂點(diǎn)順序運(yùn)行所有的基礎(chǔ)非重疊CD算法,得到不同的基礎(chǔ)社區(qū)結(jié)構(gòu)。除此之外,利用基礎(chǔ)社區(qū)信息為每個(gè)頂點(diǎn)生成特征向量,由此將網(wǎng)絡(luò)中的頂點(diǎn)轉(zhuǎn)換為特征空間。每次迭代中,算法通過(guò)從指定社區(qū)中隨機(jī)移除頂點(diǎn)并將其分配至一些未指定社區(qū),以調(diào)整社區(qū)結(jié)構(gòu)[12],由此避免違反相似性條件。在每次迭代后,對(duì)每個(gè)社區(qū)相關(guān)的相似性閾值進(jìn)行更新。持續(xù)進(jìn)行迭代,直至目標(biāo)函數(shù)的數(shù)值開(kāi)始下降。

2 算法實(shí)現(xiàn)細(xì)節(jié)

2.1 生成頂點(diǎn)的特征向量

jsj1-2.1-x1.gif

2.2 目標(biāo)函數(shù)

    首先,定義目標(biāo)函數(shù)需要明確幾個(gè)度量。

jsj1-gs1-2.gif

    其中,每個(gè)社區(qū)均關(guān)聯(lián)到一個(gè)最小相似度閾值,每個(gè)頂點(diǎn)必須滿足該閾值才能成為相應(yīng)社區(qū)的一部分。

    (3)每個(gè)社區(qū)的相似度閾值:在提出的模型中,每個(gè)社區(qū)OCj均被分配一個(gè)相似度閾值τj,若頂點(diǎn)v∈V在OCj中,則其應(yīng)該滿足SIM′(OCj,v)≥τj。給定OC={OC1,OC2,…},一個(gè)重疊社區(qū)結(jié)構(gòu)和閾值集合ζ={τ1,τ2,…},根據(jù)兩個(gè)頂點(diǎn)在不同的重疊社區(qū)中的隸屬性,定義這兩個(gè)頂點(diǎn)之間的隸屬相似度。

    (4)逐對(duì)頂點(diǎn)的隸屬相似度:根據(jù)頂點(diǎn)u和v在不同社區(qū)中的隸屬性來(lái)定義兩個(gè)頂點(diǎn)之間的隸屬相似度:

jsj1-gs3-5.gif

jsj1-gs6-8.gif

    算法將式(8)中的目標(biāo)函數(shù)最大化(算法1第31行),以得到最終重疊社區(qū)結(jié)構(gòu)OC。

2.3 更新閾值并計(jì)算目標(biāo)函數(shù)

jsj1-2.3-x1.gif

jsj1-2.3-x2.gif

2.4 復(fù)雜度分析

    當(dāng)目標(biāo)函數(shù)達(dá)到最大值且不發(fā)生進(jìn)一步變化時(shí),IOCD終止。最差情況下,在任意一次迭代后,重疊社區(qū)的最大數(shù)量為|V|,每個(gè)社區(qū)內(nèi)頂點(diǎn)最大數(shù)量也為|V|。由此,每次迭代后的運(yùn)行時(shí)間為O(|V|+|OC|)。需注意的是,只有在對(duì)數(shù)似然值增加的情況下,才可以對(duì)當(dāng)前社區(qū)結(jié)構(gòu)進(jìn)行調(diào)整。因此,IOCD通常會(huì)在有限次數(shù)的迭代后收斂。實(shí)踐中,本文假定如果對(duì)數(shù)似然值在|V|次迭代后不發(fā)生變化,則達(dá)到局部最大值。此外,IOCD是一個(gè)集成算法,需要運(yùn)行所有基礎(chǔ)算法,其優(yōu)化途徑之一是基礎(chǔ)算法的并行化。

3 實(shí)驗(yàn)結(jié)果與分析

3.1 數(shù)據(jù)集

    本文使用了兩類網(wǎng)絡(luò)數(shù)據(jù)集:

    (1)合成網(wǎng)絡(luò):利用LFR基準(zhǔn)模型[10]來(lái)生成合成網(wǎng)絡(luò)及社區(qū)。參數(shù)配置如下:頂點(diǎn)數(shù)量N=10 000;平均度jsj1-3.1-x1.gif=50;最大度kmax=150;最大社區(qū)規(guī)模cmax=150;最小社區(qū)規(guī)模cmin=50;重疊頂點(diǎn)百分比On=15%;一個(gè)頂點(diǎn)所屬的社區(qū)數(shù)量Om=20;混合參數(shù)μ=0.3(表示社區(qū)間和社區(qū)內(nèi)的邊的比率;?滋數(shù)值越低,表示社區(qū)質(zhì)量越高)。針對(duì)每個(gè)配置創(chuàng)建100個(gè)LFR網(wǎng)絡(luò),并報(bào)告平均結(jié)果。

    (2)現(xiàn)實(shí)世界的社區(qū)網(wǎng)絡(luò):使用2個(gè)不同規(guī)模的現(xiàn)實(shí)網(wǎng)絡(luò),且為先驗(yàn)可用,如表2所示。

jsj1-b2.gif

3.2 度量

    為比較檢測(cè)到的重疊社區(qū)結(jié)構(gòu),本文使用了3個(gè)標(biāo)準(zhǔn)度量:(1)重疊歸一化互信息(ONMI)[14];(2)Ω指標(biāo)[7];(3)F測(cè)度[7]

3.3 評(píng)價(jià)分析

    本文在LFR網(wǎng)絡(luò)和2個(gè)真實(shí)世界網(wǎng)絡(luò)上運(yùn)行IOCD與其他3個(gè)重疊CD算法,這3個(gè)算法分別是:文獻(xiàn)[8]提出的基于擴(kuò)展激活的標(biāo)簽傳播算法(LPAEA);文獻(xiàn)[10]提出的Memetic算法,將CD問(wèn)題建模為一個(gè)單目標(biāo)優(yōu)化問(wèn)題;文獻(xiàn)[11]提出的集成算法MEDOC,使用了元社區(qū)的概念。實(shí)驗(yàn)通過(guò)3個(gè)評(píng)價(jià)指標(biāo)對(duì)輸出進(jìn)行比較。表3~表5分別給出了在ONMI、Ω指標(biāo)和F值方面的性能。整體上,IOCD表現(xiàn)出最優(yōu)性能,其次為MEDOC[11]。IOCD在所有網(wǎng)絡(luò)上的絕對(duì)平均值ONMI為0.82。IOCD的Ω指標(biāo)和F值的絕對(duì)平均值分別為0.82和0.83。

jsj1-b3.gif

jsj1-b4.gif

jsj1-b5.gif

    所提IOCD的性能明顯優(yōu)于LPAEA[8]、Memetic[10]和MEDOC[11]的可能原因列舉如下。Memetic和MEDOC的最終性能取決于單個(gè)CD算法的性能。Memetic在找到單個(gè)非重疊社區(qū)結(jié)構(gòu)后,通過(guò)后處理步驟發(fā)現(xiàn)重疊屬性,因此重疊社區(qū)結(jié)構(gòu)的質(zhì)量取決于最初找到的非重疊社區(qū)結(jié)構(gòu)。LPAEA利用未標(biāo)簽的數(shù)據(jù)來(lái)捕捉整個(gè)數(shù)據(jù)的潛在分布,相似的數(shù)據(jù)必須要有相同的標(biāo)簽,對(duì)CD算法有一定依賴性。MEDOC利用CD算法,對(duì)利用基礎(chǔ)非重疊社區(qū)結(jié)構(gòu)所創(chuàng)建的多分體網(wǎng)絡(luò)進(jìn)行劃分,因此最終重疊社區(qū)結(jié)構(gòu)的質(zhì)量取決于在多分體網(wǎng)絡(luò)上使用的CD算法的性能。另一方面,IOCD通過(guò)多個(gè)非重疊CD算法給出的非重疊社區(qū)結(jié)構(gòu)來(lái)取得頂點(diǎn)特征,并以優(yōu)化后的設(shè)置來(lái)使用這些特征。因此,IOCD的性能不取決于任何一個(gè)CD算法,能夠從多個(gè)非重疊社區(qū)結(jié)構(gòu)中進(jìn)行有效學(xué)習(xí)。

3.4 參數(shù)選擇分析

    本文通過(guò)將混合參數(shù)μ從0.1~0.8之間變化(以0.1遞增),在LFR網(wǎng)絡(luò)上進(jìn)行實(shí)驗(yàn),涉及的主要參數(shù)問(wèn)題如下。

    (1)涉入度函數(shù)(INV):以下兩個(gè)函數(shù)用于量化頂點(diǎn)在社區(qū)中的涉入程度:

jsj1-3.4-x1.gif

    涉入度函數(shù)如圖1所示,混合參數(shù)μ從0.1~0.8之間變化(以0.1遞增)。可以看出,所提IOCD在使用一致存續(xù)性度量時(shí)始終取得了較好性能。

jsj1-t1.gif

    (2)兩個(gè)頂點(diǎn)之間的相似度(SIM):本文在2.2節(jié)提到了利用余弦相似性來(lái)測(cè)量?jī)蓚€(gè)頂點(diǎn)的特征向量之間的相似度,但本文還使用了Pearson相關(guān)系數(shù)測(cè)量了兩個(gè)特征向量之間的相似度。結(jié)果表明,余弦相似性度量的性能優(yōu)于Pearson相關(guān)系數(shù),如圖2所示。

jsj1-t2.gif

    (3)迭代次數(shù)(K):根據(jù)網(wǎng)絡(luò)中頂點(diǎn)的數(shù)量N來(lái)設(shè)定K。圖3的分析表明,對(duì)于大部分網(wǎng)絡(luò),特別是具有獨(dú)特社區(qū)結(jié)構(gòu)的網(wǎng)絡(luò)(例如混合參數(shù)μ=0.1的LFR網(wǎng)絡(luò)),IOCD的性能會(huì)在K=0.2|V|處收斂,因此,將K=0.2|V|作為默認(rèn)值。

jsj1-t3.gif

4 結(jié)論

    本文充分利用了非重疊CD的生成解,將解的信息與每個(gè)頂點(diǎn)相關(guān)聯(lián)的隱性特征信息,利用多個(gè)非重疊CD算法的輸出進(jìn)行重疊社區(qū)檢測(cè),所提IOCD幾乎不受基礎(chǔ)CD算法的影響。多個(gè)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,所提IOCD優(yōu)于一些同類CD算法。未來(lái)可能通過(guò)相關(guān)性研究或基于機(jī)器學(xué)習(xí)的方法來(lái)提升CD算法的求解效率。

參考文獻(xiàn)

[1] 劉天華,殷守林,李航.一種新的在線社交網(wǎng)絡(luò)的隱私保護(hù)方案[J].電子技術(shù)應(yīng)用,2015,41(4):122-124.

[2] 羅雙玲,張文琪,夏昊翔.基于半積累引文網(wǎng)絡(luò)社區(qū)發(fā)現(xiàn)的學(xué)科領(lǐng)域主題演化分析——以“合作演化”領(lǐng)域?yàn)槔齕J].情報(bào)學(xué)報(bào),2017,36(1):100-110.

[3] YANG J,LESKOVEC J.Overlapping community detection at scale:A nonnegative matrix factorization approach[C].Proceedings of the Sixth ACM International Conference on Web Search and Data Mining.ACM,2013:587-596.

[4] 崔俊明,李勇,李躍新.基于非加權(quán)圖的大型社會(huì)網(wǎng)絡(luò)檢測(cè)算法研究[J].電子技術(shù)應(yīng)用,2018,44(2):86-89,93.

[5] 陳曉,郭景峰,張春英.社會(huì)網(wǎng)絡(luò)頂點(diǎn)間相似性度量及其應(yīng)用[J].計(jì)算機(jī)科學(xué)與探索,2017,11(10):1629-1641.

[6] ANDREA L,F(xiàn)ILIPPO R,RAMASCO JOSE J,et al.Finding statistically significant communities in networks[J].PLOS ONE,2011,6(4):61-71.

[7] 闕建華.社交網(wǎng)絡(luò)中基于近似因子的自適應(yīng)社區(qū)檢測(cè)算法[J].計(jì)算機(jī)工程,2016,42(5):134-138.

[8] HUANG M,ZOU G,ZHANG B,et al.Overlapping community detection in heterogeneous social networks via the user model[J].Information Sciences,2018,38(4):164-184.

[9] 蔣盛益,楊博泓,姚娟娜,等.一種基于增廣網(wǎng)絡(luò)的快速微博社區(qū)檢測(cè)算法[J].中文信息學(xué)報(bào),2016,30(5):65-72.

[10] 郭楊志.復(fù)雜網(wǎng)絡(luò)社區(qū)結(jié)構(gòu)的重疊社區(qū)發(fā)現(xiàn)和魯棒性分析[D].西安:西安電子科技大學(xué),2018.

[11] CHAKRABORTY T,PARK N,SUBRAHMANIAN V S.Ensemble-based algorithms to detect disjoint and overlapping communities in networks[J].ASONAM,2016,45(12):73-80.

[12] 龍浩,汪浩.復(fù)雜社會(huì)網(wǎng)絡(luò)的兩階段社區(qū)發(fā)現(xiàn)算法[J].小型微型計(jì)算機(jī)系統(tǒng),2016,37(4):694-698.

[13] KANAWATI R.YASCA:an ensemble-based approach for community detection in complex networks[M].Computing and Combinatorics. Springer International Publishing,2014.

[14] HAJIABADI M,ZARE H,BOBARSHAD H.IEDC:an integrated approach for overlapping and non-overlapping community detection[J].Knowledge-Based Systems,2017,43(3):188-199.

[15] 陳曉,郭景峰,張春英.社會(huì)網(wǎng)絡(luò)頂點(diǎn)間相似性度量及其應(yīng)用[J].計(jì)算機(jī)科學(xué)與探索,2017,11(10):1629-1641.



作者信息:

陳吉成,陳鴻昶,李邵梅

(國(guó)家數(shù)字交換系統(tǒng)工程技術(shù)研究中心,河南 鄭州450002)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
男男成人高潮片免费网站| 欧美视频一区二区在线观看| 亚洲精品中文字幕在线观看| 欧美一区二区在线观看| 亚洲私人影吧| 一本久道久久久| 亚洲黄色有码视频| 黄色成人在线网址| 国产欧美精品在线播放| 国产精品国产三级国产专播品爱网| 欧美福利视频网站| 免费h精品视频在线播放| 久久亚洲精品伦理| 久久久久女教师免费一区| 午夜宅男欧美| 亚洲欧美日韩电影| 亚洲欧美激情视频在线观看一区二区三区 | 性欧美xxxx视频在线观看| 亚洲一区二区三区视频播放| 亚洲网站在线播放| 亚洲已满18点击进入久久| 亚洲深夜激情| 亚洲天堂免费观看| 一区二区三区日韩欧美精品| 一区二区三区|亚洲午夜| 夜夜爽www精品| av成人动漫| 亚洲一区二区三区在线播放| 亚洲尤物视频在线| 午夜精品久久久久久99热| 亚洲欧美伊人| 欧美在线电影| 亚洲国产精品一区在线观看不卡| 亚洲国产成人在线视频| 99精品热视频| 99综合精品| 亚洲午夜av在线| 午夜精品久久久久久久男人的天堂 | 国产一区二区在线观看免费| 国产一区观看| 在线看片欧美| 亚洲精品免费一区二区三区| 日韩一级视频免费观看在线| 国产精品99久久久久久有的能看| 亚洲免费视频在线观看| 欧美综合第一页| 亚洲国产免费看| 一道本一区二区| 午夜精品在线视频| 久久久久欧美精品| 欧美精品99| 国产美女精品视频| 在线播放中文字幕一区| 亚洲毛片在线| 午夜精品视频在线观看一区二区| 亚洲国产精品va在线看黑人| 中文国产一区| 久久久蜜臀国产一区二区| 欧美激情一区二区三区高清视频| 国产精品成人观看视频国产奇米| 国产一级揄自揄精品视频| 亚洲国产精品激情在线观看| 在线亚洲一区| 亚洲高清视频的网址| 亚洲五月婷婷| 久久综合色88| 欧美视频一二三区| 韩日精品视频一区| 99re66热这里只有精品4| 性做久久久久久| 99这里有精品| 久久九九全国免费精品观看| 欧美精品18+| 国产老肥熟一区二区三区| 在线播放日韩专区| 日韩亚洲国产欧美| 久久精品天堂| 99在线|亚洲一区二区| 亚洲女ⅴideoshd黑人| 久久久久九九视频| 欧美精品国产一区二区| 国产精品人人做人人爽人人添| 国模私拍一区二区三区| 亚洲日韩欧美视频一区| 最新国产乱人伦偷精品免费网站| 亚洲视频axxx| 亚洲国产精品国自产拍av秋霞| 一区二区三区福利| 久久国产精品一区二区| 欧美成人一区二区| 国产精品一区毛片| 亚洲激情av在线| 亚洲一区区二区| 欧美一区二区高清在线观看| 中文亚洲欧美| 久久久噜噜噜久久中文字免| 欧美乱在线观看| 国产日韩欧美高清| 亚洲美女黄色| 欧美一区二区在线播放| 中日韩高清电影网| 久久蜜臀精品av| 欧美午夜片欧美片在线观看| 国产亚洲欧洲997久久综合| 亚洲乱亚洲高清| 久久国产欧美| 日韩视频一区二区在线观看 | 欧美日韩不卡一区| 国产亚洲成av人片在线观看桃| 亚洲精品午夜| 久久精品首页| 欧美一级理论片| 欧美欧美全黄| 国产欧美精品日韩精品| 亚洲一区三区在线观看| 女人香蕉久久**毛片精品| 欧美日韩一区在线| 一区二区三区亚洲| 亚洲一区二区三区四区五区黄 | 亚洲日本中文| 久久精品视频亚洲| 国产精品家庭影院| 在线亚洲观看| 亚洲一区在线观看视频 | 在线观看精品视频| 亚洲欧美在线观看| 亚洲午夜激情在线| 免费成人你懂的| 尤物网精品视频| 亚洲国产精品热久久| 狂野欧美一区| 国产专区综合网| 亚洲综合色激情五月| 亚洲天天影视| 国产精品s色| 99国产精品久久久久久久| 亚洲日本成人网| 久久一区亚洲| 尤物yw午夜国产精品视频明星| 校园激情久久| 欧美一区网站| 国产精品视频精品视频| 99xxxx成人网| 亚洲视频axxx| 欧美另类在线播放| 一区久久精品| 99热这里只有精品8| 免费在线成人av| 在线色欧美三级视频| 欧美专区18| 久久精品首页| 国产视频一区在线观看一区免费 | 国产精品剧情在线亚洲| 国产精品99久久久久久久vr| 亚洲免费视频网站| 国产精品国产三级国产专播品爱网| 妖精视频成人观看www| 一区二区三区欧美激情| 欧美理论电影在线观看| 亚洲人成网站精品片在线观看| 99在线热播精品免费| 欧美日韩喷水| 亚洲午夜精品网| 午夜免费久久久久| 国产日韩欧美一区在线 | 欧美一区二区黄| 国产欧美精品日韩| 性色一区二区| 久久久综合网站| 一区二区三区在线视频观看| 亚洲电影视频在线| 欧美成人在线免费视频| 亚洲日本欧美日韩高观看| 在线视频欧美日韩精品| 国产精品国产三级国产普通话三级 | 99国产精品久久久久久久成人热| 中文网丁香综合网| 国产精品免费小视频| 欧美在线观看日本一区| 欧美gay视频| 亚洲激情一区| 欧美在线免费视频| 国内精品视频在线播放| 亚洲国产婷婷香蕉久久久久久99 | 亚洲午夜av在线| 久久精品人人做人人爽| 国产欧美一区视频| 亚洲第一福利视频| 欧美激情综合在线| 一区二区精品在线| 欧美一区深夜视频| 一区二区三区自拍| 一区二区三区精品在线| 国产酒店精品激情| 亚洲国产婷婷香蕉久久久久久99| 欧美日韩a区| 亚洲欧美日韩一区在线观看| 美女免费视频一区| 99成人在线| 久久久欧美一区二区|