《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 一種面向科技項目文本的相似度度量方法
一種面向科技項目文本的相似度度量方法
2020年電子技術應用第5期
趙曉平1,馬 文1,劉雪萍2,陳 達2
1. 云南電網有限責任公司 信息中心,云南 昆明 650011;2. 云南云電同方科技有限公司,云南 昆明 650220
摘要: 現有的文本相似度度量方法主要采用TF-IDF方法,把文本建模為詞頻向量,但未考慮文本的結構特征?,F將文本的結構特征和TF-IDF方法進行融合,提出了一種面向科技項目文本的相似度度量方法。該方法首先對文本進行預處理,其次根據文本的結構特征提取模塊文本,然后使用TF-IDF方法提取每個模塊文本的TOP-N關鍵詞, 作為模塊文本的特征向量表示,最后使用余弦聚類計算文本的相似度。實驗結果表明,在電力行業的科技項目文檔數據集上,所提方法優于TF-IDF方法。
中圖分類號: TP311
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.191420
中文引用格式: 趙曉平,馬文,劉雪萍,等. 一種面向科技項目文本的相似度度量方法[J].電子技術應用,2020,46(5):31-34,39.
英文引用格式: Zhao Xiaoping,Ma Wen,Liu Xueping,et al. A similarity measurement method for science and technology project text[J]. Application of Electronic Technique,2020,46(5):31-34,39.
A similarity measurement method for science and technology project text
Zhao Xiaoping1,Ma Wen1,Liu Xueping2,Chen Da2
1.Information Center,Yunnan Power Grid Co.,Ltd.,Kunming 650011,China; 2.Yunnan Yundian Tongfang Technology Co.,Ltd.,Kunming 650220,China
Abstract: Existing text similarity measurements often use the TF-IDF method to model texts as term frequency vectors without considering the structural features of texts. This paper combines the structural features of texts with the TF-IDF method and proposes a text similarity measurement for science and technology project texts. This approach firstly pre-processes a text and extracts module texts according to its structural features. After applying the TF-IDF method to these extracted module texts, this method extracts the top keywords of each module text, obtains its feature vector representation, and finally uses cosine formula to calculate the similarity of two texts. By comparing with the TF-IDF method, experimental results show that the proposed method can promote the evaluation metrics of F-measure.
Key words : text similarity;TF-IDF;text clustering;natural language process

0 引言

    文本相似度度量是指將文本看成一組詞的集合體,分析每個詞在文本中出現的次數以及在整個文本集合中出現次數,進而利用這些詞頻信息將文本建模為一個向量,并利用向量間的余弦距離等計算文本之間的相似度[1-2]。

    文本相似度度量被廣泛應用于許多領域,例如:信息檢索領域[3-4]、文本分類[5-8]、文本摘要的自動生成[9-10]、文本的查重檢測[11-12]。本文關注的是在電力行業的科技項目查重中應用文本相似度度量。

    現有的TF-IDF[13-15]方法主要將文本建模為詞頻向量,再使用余弦相似度來計算兩個文本間的相似度。但是對于多數文本而言,這種采用詞頻向量模型的方法需要將文本表示為詞項數目與文本數目大致相當的矩陣,矩陣中的行列向量都有著非常高的維度并且是極度稀疏的,從而最終導致非常低效的計算[1,16]。此外,這種方法也忽略了文本的的結構特征。

    針對上述問題,本文提出一種既考慮了文本的結構特征,又能有效降低文本表示模型維度的文本相似度度量方法。給定兩個文本,通過文本所提方法能夠高效、準確地計算出兩者間的相似度,為電力行業科技項目的查重提供有效支撐。



論文詳細內容請下載http://m.jysgc.com/resource/share/2000002786




作者信息:

趙曉平1,馬  文1,劉雪萍2,陳  達2

(1. 云南電網有限責任公司 信息中心,云南 昆明 650011;2. 云南云電同方科技有限公司,云南 昆明 650220)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久久人午夜亚洲精品无码区| 亚洲日韩欧洲无码av夜夜摸 | 亚洲线精品一区二区三区影音先锋| 老司机亚洲精品影视www| 大伊人青草狠狠久久| 一级二级三级黄色片| 无码中文av有码中文a| 久久毛片免费看一区二区三区| 果冻传媒李琼母亲| 亚洲国产精品免费视频| 深夜福利一区二区| 做暧暧免费小视频| 粉嫩小仙女扒开双腿自慰| 和搜子居的日子2中文版| 色综合小说久久综合图片| 国产韩国精品一区二区三区| www.日本高清| 小荡货公共厕所| 乱人伦老妇女东北| 欧美午夜精品久久久久免费视| 亚洲狠狠色丁香婷婷综合| 激情欧美日韩一区二区| 偷自视频区视频真实在线| 精品久久久久久亚洲精品| 午夜看一级特黄a大片黑| 美女视频黄a视频全免费网站色 | 99视频免费播放| 天天摸日日摸狠狠添| www.henhencao.com| 好男人视频网站| 久久精品一本到99热免费| 曰批视频免费30分钟成人| 亚洲av无码兔费综合| 欧美人与物VIDEOS另类| 亚洲成人免费在线观看| 欧美老熟妇xB水多毛多| 亚洲欧美另类中文字幕| 精品久久久无码中文字幕 | 性欧美videos另类视频| 三级三级久久三级久久| 性做久久久久久|