《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 業界動態 > 造價30億歐元的大型強子對撞機成功運行Grover算法

造價30億歐元的大型強子對撞機成功運行Grover算法

2020-12-23
來源:光子盒

光子盒研究院出品

在上個月,歐洲核子研究組織(CERN)報道了一篇關于量子搜索算法在造價30億歐元的大型強子對撞機(LHC)高能物理數據中的應用。

科學家們展示了Grover量子搜索算法的一種新應用,在CERN大型強子對撞機13 TeV開放數據下,搜索質子-質子碰撞中的罕見情況。最終,在搜索碰撞數據集過程中發現了四個輕子,這證明了Grover算法可以在未排序的數據集中可以進行正確的選擇。

這一案例展示了量子計算在高能物理中的廣闊前景。

什么是Grover量子搜索算法?

繼Peter Shor于1994年提出Shor算法后,Lov Kumar Grover于1996年提出Grover算法,這一算法被認為是量子計算中的第二個主要算法(第一個是Shor算法)。

由于Grover算法沒有使用具體問題的特殊結構信息,因此它是一種通用的算法,提供了一個普適的框架。

具體算法如下:

(1)初始化。應用Oracle算子 ,檢驗搜索元素是否是求解的實際問題中需要搜索的解。

(2)進行Grover迭代。將結果進行Hadamard門變換。

(3)結果進行運算。

(4)結果進行Hadamard門變換。

Grover量子搜索算法能夠實現在未整理數據庫中對滿足條件的目標成功搜索,并對計算復雜度為NP的問題有重要加速作用,實現了數據檢索的二次加速。

搜索數據庫是計算機科學中的一項基本任務,它涉及從查找電話號碼到破解密碼的所有工作。因此,任何提速都是一項重大進步。

1999年,Zalka等人更是證明了Grover算法為最優量子搜索算法。

涉及到搜索問題,其主要任務是從一個巨大的無序數據庫當中能高效的找到滿足特定要求的元素或由某些特定元素構成的元素子集。我們知道,驗證一個給定的元素或子集是否滿足特定要求是相對容易的,但是從一個巨大的無序數據庫當中找到這些滿足特定要求的元素或子集就不是那么容易了,特別是隨著數據庫的增大,搜索任務會更加艱巨。

在經典算法中,要從一個無序數據庫中找出滿足特定要求的元素或子集,一般是對所有元素進行逐個順序檢查,把滿足特定要求的元素或子集篩選出來,比如一個元素容量為N的數據庫,由于經典搜索算法執行步驟n與數據庫中元素數目N一般成線性正比例關系,所以要找到滿足特定要求的元素,平均地需要對這個數據庫進行N/2次查詢,最壞的情況下,需要對這個數據庫進行N次查詢。這樣會導致算法搜索效率不高,而且浪費計算資源。

直到Grover提出了基于量子計算并行性原理的量子搜索算法。該算法只需要對這個無序數據庫進行次查詢,就能以接近于100%的概率把滿足特定要求的元素或子集找出來。由此可見,與經典算法相比,Grover量子搜索算法的效率是非常高的,而且隨著N越大,Grover算法的優越性體現的越明顯。

驗證與迭代

1998年,Cuang I. L. 等人利用核磁共振(NMR)技術完成了兩個量子比特的Grover算法的演示性實驗。當N=4時(兩個量子比特)時,在經典搜索中,平均要嘗試9/4次才能成功,而NMR實驗表明,量子搜索僅一次就可找到目標。

2000年,Brassard G等人利用振幅放大加速搜索過程;2006年,Phaneendr H.D等人提出了利用Grover算法攻擊三重DES算法;2007年,Younes A提出了固定相位Grover算法,將成功概率提升到98%以上。

2009年,Yu Dong Zhang等人針對Grover算法成功概率隨解數的增加而降低的問題,提出了基于擴大搜索空間的改進算法。2010年,葉峰在對AES算法的密鑰搜索算法進行了量子線路設計,成功使用量子搜索算法攻擊AES算法。

2013年,研究者將Grover算擴展到機器學習領域,如Aimeur E等人提出了快速尋找聚類算法中最大距離點的方法,該方法核心是利用Durr C等人提出的Grover變體算法,快速尋找到數據集中距離最遠的兩點。

2017年,Chakrabarty I等人在Grover算法的基礎上,提出了一種動態的量子搜索算法,算法通過將原始的靜態選擇函數替換為動態選擇函數來處理非結構化數據庫,使Grover算法的應用擴展到隨機搜索算法領域。

除了在量子計算機上可以驗證Grover算法,如今量子仿真作為量子算法研究最有力的手段和工具,也成為實現Grover算法的途徑之一。

2013年,呂相文等人利用GPU開展的量子仿真實驗,提出了兩種關于Grover算法特征的仿真工作流程方案,實現了存儲空間和存儲器訪問的優化,仿真了最高25量子比特的Grover量子搜索算法,仿真加速比達到了23倍。

隨著IBM、英特爾、微軟、谷歌、阿里巴巴、百度、華為等國內外科技巨頭相繼發布量子計算云平臺,實現Grover算法的平臺和途徑也在逐漸增多。

不足與缺陷

Grover算法在應用中也有它的局限性,盡管極具應用潛力,但是由于涉及重大的技術挑戰,實施Grover算法仍然需要時間。第一臺能夠實現它的量子計算機于1998年問世,但第一臺可擴展版本直到2017年才出現。

Grover量子搜索算法是一個近似算法,它的成功概率并不是100%。當搜索目標大于數據庫記錄數的1/4時,搜索成功的概率快速降低;當搜索的目標大于數據庫記錄數的一半時,搜索徹底失效。

另外,Grover自己在做相位推廣時犯了錯誤,即允許兩個相位取反為任意相位轉動。

雖然學者們對其己經做了很多的研究并取得了大量成果,但仍不能滿足時代的需求?,F階段主要從以下幾個方面對Grover算法進行了研究:

1.針對Grover算法的缺點,提出解決這個缺點的改進算法:

就在Grover發表他的研究成果幾年后,班加羅爾印度科學研究所的Apoorva Patel解釋了:當有四個選擇時,使用Grover算法可以在一步中區分四個選擇,也就是在四個選擇里搜索一個的準確率是100%。

而在其他搜索過程中,如在結構化搜索中,總的成功率是每個成分的搜索成功率的乘積,這成功率相乘下來后,失敗概率就非常大了。

而Grover自己在做相位推廣時做了誤判,他認為將兩個相位取反換成任意相角轉動皆可構造量子搜索算法,但采用其他角度時效率較低,最好選擇180度。

后來,清華大學龍桂魯團隊通過大量的推理論證,最終得到了與Grover推斷完全相反的結果。

1999年,龍桂魯等人指出在Grover量子搜索算法中使用任意的相位旋轉時,若想以較高的概率得到想要搜索的目標項,則兩次旋轉相位的取值必須滿足一定的匹配條件:目標項的旋轉相位與非目標項的旋轉相位須彼此相等。

2004年,龍桂魯等人隨后提出滿足相位匹配條件的零失誤率的Grover算法,該算法通過將反轉相位轉化為與數據庫大小相關的角度,來提高算法的成功率。

2.基于Grover算法,利用新的量子工具,設計新型的量子搜索算法:

Korepin等人提出了用于部分搜索的量子算法,這個算法降低了算法的迭代次數。

周日貴等人提出了多模式高概率的量子搜索算法,該算法能以高概率解決量子神經網絡中的多模式問題。

3.將Grover算法應用到其他領域,去解決類似的問題:

學者們針對不同的問題提出了很多優化,如最小值問題、排序問題、最短路徑問題和圖像檢索等問題。

近年來,研究人員將Grover算法廣泛應用于機器學習領域中,提出了很多相關的量子機器學習算法。

主要應用

Grover算法的實現相對量子傅里葉變換來說要簡單得多,而且它對于無序數據集的搜索問題,如果忽略常系數,則屬于最優的算法之一。

更重要的是量子系統要與外界環境耦合,極不穩定,消相干是指數級的,因此量子力學計算機對外界擾動是極其敏感的。這樣一來,在存在大量噪音的環境中要想使系統正常工作,就更需要考慮算法的魯棒性。

Grover指出,對某些擾動,他的量子搜索算法可以具有一定的魯棒性。由于實現簡單、具有魯棒性,Grover算法現已廣泛應用于各種問題。

密碼破譯

Grover算法不僅可應用于求解圖的著色、子集和最短路徑和排序等問題,還可應用于破譯密碼學中的DES(數據加密標準)密碼體系,在搜索密碼系統的密鑰方面有很大的潛能。

安全通信

2010年,Wang,C等人提出了一個基于Grover量子搜索算法的量子直接通信方案。該方案采用雙量子比特作為初態,秘密信息通過雙量子比特酉運算進行編碼和譯碼,并且兩個通信方Alice和Bob可以直接進行信息交換。

2012年,Tseng,H.Y等人提出了基于Grover量子搜索算法的受控量子確定性安全通信協議(CDSQC),該協議具有信息傳輸效率高和量子存儲器少等優點,而且在噪聲環境下該協議也能有效抵制來自外部的竊聽者。

優化問題

優化問題是一個非常普遍的領域,量子算法有望顯著提高計算速度,雖然Grover算法只是得到平方增長,但是它和其推廣還可用于提升優化問題的性能,包括模式匹配、全局優化、三元可滿足性和最小值等問題。

這一領域的應用潛力極大,因為與物流、投資組合管理、原料計劃和電信網絡管理等非常廣泛的業務問題緊密相關。

機器學習

現階段Grover算法多應用于機器學習領域,衍生出非常多的新型的量子算法,例如量子分裂聚類算法、量子聯想記憶、量子神經網絡和量子K均值聚類等。

其中,很多量子機器學習算法以Grover算法為基礎提高了經典算法的速率,并且在其他領域有著非常廣泛的應用。

值得注意的是,Grover算法雖然沒有使算法的時間復雜度從指數級降低為多項式級,但其加速效果仍然相當可觀,并且由于搜索問題在日常生活中的廣泛應用,Grover算法的前景值得期待。

-End-

1930年秋,第六屆索爾維會議在布魯塞爾召開。早有準備的愛因斯坦在會上向玻爾提出了他的著名的思想實驗——“光子盒”,公眾號名稱正源于此。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
在线观看一区欧美| 亚洲另类春色国产| 欧美影院精品一区| 国产一区二区毛片| 亚洲激精日韩激精欧美精品| 在线成人激情视频| 国产区在线观看成人精品| 欧美专区第一页| 亚洲国产欧美一区二区三区同亚洲| 亚洲一级二级| 黄色亚洲大片免费在线观看| 欧美国产先锋| 亚洲一区999| 久久成人综合视频| 亚洲精品日韩综合观看成人91| 欧美日韩在线一二三| 亚洲欧美日韩综合国产aⅴ| 久久成人精品| 欧美一区二区三区播放老司机| 欧美亚洲综合另类| 亚洲巨乳在线| 日韩视频在线一区二区三区| 日韩午夜免费| 禁久久精品乱码| 国产精品劲爆视频| 久久综合色播五月| 亚洲男人影院| 亚洲精品乱码久久久久久蜜桃91| 在线亚洲自拍| 影音先锋日韩资源| 在线看欧美日韩| 国产伦精品一区二区三区免费| 欧美成人情趣视频| 欧美在线观看视频在线| 久久精品久久99精品久久| 一本色道久久综合狠狠躁篇的优点| 亚洲伊人观看| 亚洲老司机av| 中文精品99久久国产香蕉| 亚洲福利电影| 亚洲精品视频啊美女在线直播| 9l视频自拍蝌蚪9l视频成人| 尤物九九久久国产精品的特点| 亚洲国产精品高清久久久| 国产一区二区三区高清| 一区二区在线观看视频| 91久久夜色精品国产九色| 国产亚洲成精品久久| 欧美日韩中文字幕在线| 欧美99在线视频观看| 久久国产欧美日韩精品| 久久久综合香蕉尹人综合网| 亚洲欧美激情视频在线观看一区二区三区| 亚洲免费一级电影| 久久精品九九| 欧美美女操人视频| 免费成人高清视频| 久久成人综合视频| 女人香蕉久久**毛片精品| 欧美日韩一区二区在线观看视频| 国产精品一区二区在线观看| 一区在线视频观看| 一区二区三区四区精品| 先锋a资源在线看亚洲| 91久久久久久| 亚洲国产精品久久久久久女王 | 亚洲无线观看| 亚洲国产日韩在线一区模特| 亚洲视频免费| 亚洲精品女av网站| 亚洲欧美成aⅴ人在线观看| 久久美女性网| 欧美视频网站| 亚洲第一二三四五区| 亚洲视频在线播放| 亚洲精品久久久久| 欧美一区二区三区在线免费观看 | 亚洲精品1区2区| 亚洲国产精品www| 亚洲一区二区三区四区在线观看| 亚洲国产专区校园欧美| 欧美一区二区三区在线播放| 欧美日韩国产丝袜另类| 欧美日韩视频免费播放| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲小说欧美另类社区| 亚洲精品一区二区三区四区高清| 亚洲另类春色国产| 久久国产精品久久久久久| 欧美日韩三级| 亚洲福利视频网站| 久久本道综合色狠狠五月| 亚洲制服少妇| 欧美亚洲网站| 久久激情视频久久| 欧美涩涩网站| 亚洲黄色免费| 亚洲国产成人午夜在线一区 | 久久精品视频99| 亚洲国产精品久久精品怡红院| 午夜欧美大片免费观看 | 欧美亚州一区二区三区 | 99成人在线| 亚洲日本理论电影| 麻豆精品一区二区av白丝在线| 国产精一区二区三区| 中文日韩电影网站| 一区二区三欧美| 欧美国产综合一区二区| 亚洲福利视频专区| 亚洲人成艺术| 欧美成人综合| 亚洲电影在线免费观看| 亚洲国产日韩欧美一区二区三区| 久久久99免费视频| 欧美大片在线观看一区| 好吊日精品视频| 欧美中文字幕久久| 久久久久久午夜| 国内精品久久久| 99re6这里只有精品| 99精品欧美一区二区三区| 午夜精品一区二区在线观看| 欧美日韩国产精品一区| 亚洲日本va午夜在线电影| 亚洲精品一二三| 欧美激情91| 亚洲精品乱码久久久久| 99在线观看免费视频精品观看| 欧美极品欧美精品欧美视频| 国产欧美日韩精品在线| 亚洲自拍偷拍色片视频| 欧美一区二区三区四区高清| 国产欧美日韩精品丝袜高跟鞋| 午夜在线a亚洲v天堂网2018| 日韩写真在线| 欧美专区一区二区三区| 国产午夜精品久久久久久免费视 | 日韩网站在线观看| 欧美另类一区二区三区| 99精品热6080yy久久 | 国产精品视频免费一区| 亚洲电影在线观看| 亚洲精品资源美女情侣酒店| 欧美日韩成人一区| 亚洲一二三区精品| 久久精品人人做人人爽| 一区二区三区中文在线观看| 亚洲欧洲日本专区| 欧美日韩高清一区| 一本色道久久综合一区| 欧美一区二区日韩| 韩国女主播一区二区三区| 91久久综合| 欧美日韩一区二区三区在线观看免 | 欧美日韩在线影院| 亚洲一区二区不卡免费| 久久精品二区| 在线欧美视频| 亚洲校园激情| 国产亚洲日本欧美韩国| 亚洲另类在线视频| 国产精品日韩欧美| 久久精品午夜| 欧美视频一区二区三区四区| 亚洲欧美日韩人成在线播放| 99视频精品在线| 国产精品久久久久7777婷婷| 欧美一区亚洲一区| 欧美美女bbbb| 欧美亚洲在线播放| 欧美精品在线视频| 亚洲欧美日韩在线综合| 欧美高清在线视频观看不卡| 在线一区日本视频| 免费观看成人| 亚洲性线免费观看视频成熟| 麻豆精品在线视频| 亚洲一区二区三区在线观看视频| 猛男gaygay欧美视频| 亚洲影视在线播放| 欧美aa在线视频| 午夜在线播放视频欧美| 欧美日韩精品系列| 欧美制服丝袜第一页| 欧美体内she精视频在线观看| 欧美在线免费播放| 国产精品99免视看9| 亚洲黑丝在线| 国产精品婷婷| 中国成人亚色综合网站| 黄色成人在线| 香蕉尹人综合在线观看| 亚洲精品少妇网址| 久久亚裔精品欧美| 在线观看日产精品| 欧美一级片在线播放| 91久久精品美女高潮| 久久精品视频va| 在线视频精品一|