《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于雙向GRU模型的網(wǎng)絡(luò)流量預(yù)測的研究
基于雙向GRU模型的網(wǎng)絡(luò)流量預(yù)測的研究
2022年電子技術(shù)應(yīng)用第2期
徐海兵,郭久明
邁普通信技術(shù)股份有限公司 科技創(chuàng)新部,四川 成都610094
摘要: 當(dāng)前使用門控循環(huán)單元(Gated Recurrent Units,GRU)神經(jīng)網(wǎng)絡(luò)進(jìn)行流量預(yù)測時(shí),普遍存在滯后性以及預(yù)測準(zhǔn)確性不高的問題,因此提出一種改進(jìn)的GRU模型進(jìn)行流量預(yù)測的方法。首先基于GRU神經(jīng)網(wǎng)絡(luò)提出一種雙向GRU神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)堆疊的網(wǎng)絡(luò)模型,適用于流量特征、時(shí)間特征、事件特征等多維向量的輸入;同時(shí)為解決部分時(shí)間段準(zhǔn)確度不高的問題,將訓(xùn)練樣本進(jìn)行日期分類,針對每一類日期生成單獨(dú)的網(wǎng)絡(luò)模型,能大幅提升預(yù)測的準(zhǔn)確度以及改善預(yù)測的滯后性。最后,為了提升流量峰值的預(yù)測準(zhǔn)確度,采用樣本的再平衡手段以及自定義損失函數(shù),實(shí)驗(yàn)結(jié)果表明,能較好地達(dá)成預(yù)期目標(biāo)。
中圖分類號: TN919.2;TP181
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211517
中文引用格式: 徐海兵,郭久明. 基于雙向GRU模型的網(wǎng)絡(luò)流量預(yù)測的研究[J].電子技術(shù)應(yīng)用,2022,48(2):19-22,27.
英文引用格式: Xu Haibing,Guo Jiuming. Research on network traffic prediction based on Bi-GRU model[J]. Application of Electronic Technique,2022,48(2):19-22,27.
Research on network traffic prediction based on Bi-GRU model
Xu Haibing,Guo Jiuming
Technological Innovation Department,Maipu Communication Technology Co.,Ltd.,Chengdu 610094,China
Abstract: At present, there are some problems such as lag and low prediction accuracy when using gated recurrent units(GRU) neural network to predict traffic. This paper proposes an improved GRU model for traffic prediction. Firstly, based on GRU neural network, a network model integrating Bi-GRU neural network and artificial neural network is proposed, which satisfies the input of multi-dimensional vectors such as traffic features, time features and event features. At the same time, in order to improve the accuracy of some time periods, the training samples are classified into date classes, and a separate network model is generated for each type of date. It can greatly improve the accuracy of prediction and improve the lag of prediction. Finally, in order to improve the prediction accuracy of peak traffic, the experimental results show that the proposed goal can be achieved by the means of sample propensity balance and user-defined loss function.
Key words : traffic prediction;neural network;gated recurrent unit;loss function

0 引言

    隨著網(wǎng)絡(luò)的普及,網(wǎng)絡(luò)流量的規(guī)模不斷被刷新,高效且合理地利用網(wǎng)絡(luò)資源變得尤為重要。一方面,網(wǎng)絡(luò)資源分配的不合理可能導(dǎo)致部分網(wǎng)絡(luò)資源由于耗盡而無法正常使用,甚至造成網(wǎng)絡(luò)癱瘓,而其他鏈路資源可能卻處于過剩的狀態(tài),嚴(yán)重影響了用戶的上網(wǎng)體驗(yàn);另一方面,雖然在前期合理分配了網(wǎng)絡(luò)資源,但網(wǎng)絡(luò)流量具有突發(fā)性,原本充足的網(wǎng)絡(luò)資源可能出現(xiàn)短缺的情況。為了解決此問題,現(xiàn)有軟件定義網(wǎng)絡(luò)(Software Defined Network,SDN)[1]控制器會(huì)實(shí)時(shí)檢查鏈路狀況,在一定程度上緩解了網(wǎng)絡(luò)擁塞,但由于調(diào)度時(shí)已經(jīng)發(fā)生了擁塞,無法滿足更高等級、更好服務(wù)質(zhì)量的要求。鑒于此,如果能夠精準(zhǔn)預(yù)測網(wǎng)絡(luò)流量,提前發(fā)現(xiàn)未來時(shí)刻的網(wǎng)絡(luò)流量變化情況,流量調(diào)度系統(tǒng)則可以提前進(jìn)行合理調(diào)度,有效避免擁塞的發(fā)生。




本文詳細(xì)內(nèi)容請下載:http://m.jysgc.com/resource/share/2000003960




作者信息:

徐海兵,郭久明

(邁普通信技術(shù)股份有限公司 科技創(chuàng)新部,四川 成都610094)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久精品国产亚洲AV天海翼 | 亚洲高清偷拍一区二区三区| 色吊丝中文字幕| 在线观看片免费人成视频播放| 亚洲乱码无限2021芒果| 狂野欧美激情性xxxx| 午夜国产羞羞视频免费网站| 青青操免费在线视频| 国产欧美另类久久精品蜜芽| ririai66视频在线播放| 日韩精品专区在线影院重磅| 人人爽人人爽人人片av| 黑人大长吊大战中国人妻 | 欧美视频中文字幕| 国产xvideos在线观看| 91在线品视觉盛宴免费| 无码人妻久久一区二区三区免费丨 | 亚洲欧美成人综合久久久| 花季传媒在线观看| 国产精品欧美一区二区三区| 中文字幕一区二区三区视频在线| 欧美日韩国产亚洲一区二区三区| 人妻丰满熟AV无码区HD| 边做饭边被躁欧美三级| 国产综合色在线视频| 99精品人妻少妇一区二区| 女女同性一区二区三区四区 | 色狠狠婷婷97| 国产精品JIZZ在线观看无码| 一本之道在线视频| 欧美乱大交xxxx| 免费观看呢日本天堂视频| 精品视频一区二区观看| 国产一级理论免费版| 亚洲最大的黄色网| 天天综合网久久| 久久99热成人精品国产| 欧美αv日韩αv另类综合| 人人爽人人爽人人片a免费| 直接在线观看的三级网址| 国产中文字幕免费|