《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于深度學習的詞語級中文唇語識別
基于深度學習的詞語級中文唇語識別
2022年電子技術應用第12期
陳紅順1,陳觀明1,2
1.北京師范大學珠海分校 信息技術學院,廣東 珠海519087;2.珠海歐比特宇航科技股份有限公司,廣東 珠海519080
摘要: 在無聲或噪聲干擾嚴重的環境下,或對于存在聽覺障礙的人群,唇語識別至關重要。針對詞語級中文唇語識別的問題,提出了SinoLipReadingNet模型,前端采用Conv3D+ResNet34結構用于時空特征提取,后端分別采用Conv1D結構和Bi-LSTM結構用于分類預測,并引入Self-Attention、CTCLoss對Bi-LSTM后端進行改進。最終在新網銀行唇語識別數據集上進行實驗,結果表明,SinoLipReadingNet模型在識別準確率上明顯優于中科院D3D模型,多模型融合的預測準確率達到了77.64%,平均字錯率為21.68%。
中圖分類號: TP391.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222903
中文引用格式: 陳紅順,陳觀明. 基于深度學習的詞語級中文唇語識別[J].電子技術應用,2022,48(12):54-58.
英文引用格式: Chen Hongshun,Chen Guanming. Chinese word-level lip reading based deep learning[J]. Application of Electronic Technique,2022,48(12):54-58.
Chinese word-level lip reading based deep learning
Chen Hongshun1,Chen Guanming1,2
1.School of Information Technology,Beijing Normal University(Zhuhai),Zhuhai 519087,China; 2.Zhuhai Orbita Aerospace Science & Technology Co.,Ltd.,Zhuhai 519080,China
Abstract: Lip reading is crucial in the silent environment or environments with serious noise interference, or for people with hearing impairment. For word-level Chinese lip reading problem, SinoLipReadingNet model is proposed, the front end of which with Conv3D and ResNet34 is used to extract temporal-spatial features, and the back end of which with Conv1D and Bi-LSTM are used for classification and prediction respectively. Also, self-attention and CTCLoss are added to improve the back end with Bi-LSTM. Finally,the SinoLipReadingNet model is tested on XWBank lipreading dataset and results show that the prediction accuracy is significantly better than that of D3D model, the prediction accuracy and avrage CER of multi-model fusion reaches 77.64% and 21.68% respectively.
Key words : lip reading;ResNet;Bi-LSTM;CTCLoss;self-attention

0 引言

    語言是人類溝通交流的主要方式,語音是人類語言交流的主要載體之一。在無聲或噪聲干擾嚴重的環境下,或對于存在聽覺障礙的人群,如何利用通過嘴唇運動進行語言識別至關重要。唇語識別是指通過觀察和分析人說話時唇部運動的特征變化,識別出人所說話的內容。唇語識別具有廣闊的應用前景:在醫療健康領域,可以借助唇語識別輔助患有聽力障礙的病人溝通交流[1];在安防領域,人臉識別同時通過唇語識別以提高活體識別的安全性[2];在視頻合成領域, 利用唇語識別可以合成特定人物講話場景的視頻[3],或者合成高真實感的虛擬人物動畫等。

    唇語識別主要包含4個步驟[4]:人臉關鍵點檢測與跟蹤、唇語區域提取、時空特征提取和分類與解碼。其中,時空特征提取和分類與解碼是唇語識別的研究重點。近年來,隨著大規模數據集[5]的出現,基于深度學習的方法可以自動抽取深層特征,逐漸成為唇語識別研究的主流方法[6]。如圖1所示,基于深度學習的唇語學習方法將一系列的唇部圖像送入前端以提取特征,然后傳遞給后端以進行分類預測,并以端到端的形式進行訓練。




本文詳細內容請下載:http://m.jysgc.com/resource/share/2000005040。




作者信息:

陳紅順1,陳觀明1,2

(1.北京師范大學珠海分校 信息技術學院,廣東 珠海519087;2.珠海歐比特宇航科技股份有限公司,廣東 珠海519080)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 热99re久久免费视精品频软件| 高清国产美女一级毛片| 女仆胸大又放荡的h| 中日韩精品无码一区二区三区| 最近中文字幕mv高清在线视频| 亚洲欧洲日产国码一级毛片| 男人和女人在床做黄的网站| 午夜精品在线免费观看| 色猫咪av在线网址| 国产午夜无码精品免费看动漫| 久久综合久久鬼| 国产精品一级片| 亚洲欧美日韩久久精品| 荫蒂添的好舒服视频囗交| 国产恋夜精品全部护士| 亚洲第一成人在线| 女人与大拘交在线播放| 丝袜高跟美脚国产1区| 日韩在线视频精品| 亚洲av无码久久寂寞少妇| 欧美日本中文字幕| 亚洲欧美成人综合久久久| 毛片视频网站在线观看| 你是我的城池营垒免费观看完整版 | 麻豆成人久久精品二区三区免费| 国产激情在线观看| 中文字幕丝袜诱惑| 国产福利你懂的| 中文字幕第四页| 国产精品一区二区久久| 大战孕妇12p| 国产精品久久一区二区三区| 两个人看的www免费| 国产精品久线在线观看| 手机看片福利永久国产日韩| 国产精品免费精品自在线观看| 手机在线看片你懂的| 国产精品一区二区在线观看| 777奇米四色| 国产欧美视频在线| 黑人粗长大战亚洲女2021国产精品成人免费视频 |