《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 惡意代碼可視化分類研究
惡意代碼可視化分類研究
電子技術應用
丁全1,丁伯瑞2,查正朋2,劉德陽3
1.國網安徽省電力有限公司 電力科學研究院; 2.中國科學技術大學 先進技術研究院;3.安慶師范大學 計算機與信息學院
摘要: 新型惡意代碼設計變得日益復雜,傳統的識別并檢測方法已經滿足不了當前的需求。因此,在對BODMAS數據集分析的基礎上,將其進行可視化處理并進行分類。同時考慮到現有惡意代碼可視化分類模型主要依賴全局特征,在卷積神經網絡基礎上設計了一個CA(通道級局部特征關注)模塊和一個MA(多尺度局部特征關注)模塊,構建了兩個新模型,巧妙地結合全局與局部特征。在BODMAS數據集上,新模型在惡意代碼種類識別并分類平均準確率相比于BODMAS數據集論文描述的方法得到了提高,證明了數據集可視化可行性和新模型的有效性,為未來研究提供了重要的數據和實驗基礎。
中圖分類號:TN918;TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244838
中文引用格式: 丁全,丁伯瑞,查正朋,等. 惡意代碼可視化分類研究[J]. 電子技術應用,2024,50(5):41-46.
英文引用格式: Ding Quan,Ding Borui,Zha Zhengpeng,et al. Research on visualization-based classification of malicious code[J]. Application of Electronic Technique,2024,50(5):41-46.
Research on visualization-based classification of malicious code
Ding Quan1,Ding Borui2,Zha Zhengpeng2,Liu Deyang3
1.Electric Power Science Research Institute, State Grid Anhui Electric Power Co., Ltd.; 2.Institute of Advanced Technology, University of Science and Technology of China; 3.School of Computer and Information, Anqing Normal University
Abstract: The design of new malicious code is becoming increasingly complex, and traditional recognition and detection methods can no longer meet current requirements. Therefore, based on the analysis of the BODMAS dataset, this paper performs visualization processing and classification. At the same time, considering that the existing malware visualization classification models mainly rely on global features, this paper designs a CA (Channel-level local feature Attention) module and a MA (Multi-scale local feature Attention) module based on the convolutional neural network, and constructs two new models that cleverly combine global and local features. On the BODMAS dataset, the new models have achieved an increase in the average accuracy of recognizing and classifying malware types compared to the methods described in the BODMAS dataset paper. This proves the feasibility of dataset visualization and the effectiveness of the new models, providing important data and experimental basis for future research.
Key words : BODMAS dataset;CA module;MA module;visualization of malicious code

引言

隨著互聯網技術的快速發展,計算機病毒已成為全球范圍內的嚴重威脅,給政府、企業和個人用戶的信息安全帶來了巨大風險。根據國家互聯網應急中心統計顯示,2023年11月僅一周接到的涉及黨政機關和企事業單位的漏洞總數23 920個,比上周(20 305個)環比增加18%[1]。而且,不斷涌現的新型惡意代碼,特別是能規避殺毒軟件的變種,對防范惡意代碼的工作提出了極大挑戰。研究對惡意代碼家族進行分類歸納,快速、準確地辨識已知惡意代碼家族及其衍生變種,將極大地加強應對惡意代碼的防范能力。因此,對未知病毒的快速檢測和分類識別成為網絡安全領域亟需解決的問題。

研究惡意代碼家族分類可幫助快速識別已知惡意代碼及其變種,增強防范能力。然而,傳統靜態分析檢測方式容易受加殼、變形影響,動態檢測雖可發現行為,但復雜且耗時。機器學習算法基于提取文件樣本特征,提高檢測精度,但仍需專家干預,無法完全自動化[2]。


本文詳細內容請下載:

http://m.jysgc.com/resource/share/2000005985


作者信息:

丁全1,丁伯瑞2,查正朋2,劉德陽3

(1.國網安徽省電力有限公司 電力科學研究院,安徽 合肥 230000;

Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产成人免费a在线视频app | 在线日本妇人成熟| 女教师合集乱500篇小说| 中文字幕无码不卡免费视频| 日韩理论电影在线| 亚洲人成电影在线观看青青| 法国性经典xxxxhd| 免费a级午夜绝情美女视频| 美女免费精品高清毛片在线视| 国产伦精品一区二区三区无广告 | 韩国女主播一区二区| 国产成视频在线观看| 青青操免费在线视频| 国产精品自在线拍国产手青青机版| a资源在线观看| 妲己丰满人熟妇大尺度人体艺| 中文字幕人成乱码熟女| 无码精品久久久天天影视| 久久影院最新消息| 日韩精品中文字幕无码专区| 亚洲AV日韩AV永久无码下载| 欧美三级在线观看不卡视频| 亚洲成人激情小说| 欧美美女视频网站| 亚洲白嫩在线观看| 波多野结衣大战5个黑人| 伊人久久大香线蕉avapp下载| 粉嫩被粗大进进出出视频| 午夜精品久久久久久| 美国式禁忌矿桥矿17集| 国产XXXX99真实实拍| 花季传媒在线观看| 国产一级黄毛片| 色综合合久久天天综合绕视看| 国产亚洲美女精品久久久2020 | 老子影院午夜精品无码| 国产一级视频播放| 豪妇荡乳1一5| 国产乱人伦无无码视频试看| 野花社区视频在线观看| 国产亚洲精品美女久久久久久下载|