《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于有限記憶、概率學習的雙時間尺度切片資源分配方法
基于有限記憶、概率學習的雙時間尺度切片資源分配方法
電子技術應用
邵鋒1,孫君1,2
1.南京郵電大學 通信與信息工程學院;2.江蘇省無線通信重點實驗室
摘要: 網絡切片是使網絡能夠滿足不同垂直領域的不同服務需求的關鍵要素,為解決網絡中切片類型動態變化的問題,提出了一種聯邦-多智能體強化學習雙時間尺度資源分配(F-MALML)算法。大時間尺度下,通過有限記憶學習算法為每個基站分配資源;小時間尺度內各基站使用F-MALML算法進一步為切片中的用戶動態分配資源。引入了一種概率學習機制,根據前一時隙的分配結果和網絡實際狀態,動態調整每個時間尺度的分配策略。仿真結果表明,所提算法相比于其他兩種基準算法在新增切片的切片滿意度及系統頻譜效率方面都有較大提升,且表現出更好的穩定性。
中圖分類號:TN929.5 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.246123
中文引用格式: 邵鋒,孫君. 基于有限記憶、概率學習的雙時間尺度切片資源分配方法[J]. 電子技術應用,2025,51(3):17-24.
英文引用格式: Shao Feng,Sun Jun. Dual time scale network slice resource allocation method based on limited memory and probability learning[J]. Application of Electronic Technique,2025,51(3):17-24.
Dual time scale network slice resource allocation method based on limited memory and probability learning
Shao Feng1,Sun Jun1,2
1.College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications; 2.Jiangsu Key Laboratory of Wireless Communications
Abstract: Network slicing is crucial for enabling networks to meet the diverse service demands of various verticals. To address the issue of dynamic changes in slice types, a Federated Multi-Agent Reinforcement Learning (F-MALML) algorithm with dualtime scale resource allocation is proposed. At the large time scale, a finite memory learning algorithm allocates resources to each base station. At the small time scale, each base station uses F-MALML to dynamically allocate resources to users. A probabilistic learning mechanism is introduced to adjust the allocation strategy based on previous results and the current network state. Simulation results show that the proposed algorithm achieves significant improvements in slice satisfaction for newly added slices and system spectral efficiency compared to the two benchmark algorithms, while demonstrating better stability.
Key words : network slicing;resource allocation;dual time scale;deep reinforcement learning;slicing satisfaction

引言

5G-A和6G移動網絡將帶來增強的網絡能力和性能,為不同的行業和個人提供各種用例[1]。不同的應用程序在帶寬、時延、能源效率、移動性等方面有不同甚至相互矛盾的要求,而網絡切片技術可以有效地解決這一需求。網絡切片通常包括接入網切片和核心網切片,對無線接入網(Radio Access Network,RAN)來說,向用戶分配無線電資源是一項極其復雜的操作,通常面臨著資源稀缺和異構服務質量(QoS)的問題[2]。因此,如何將通信資源以最佳方式分配到切片和用戶成為關鍵問題。Zangooei 等人比較綜合地調研了在RAN切片中處理資源分配問題最先進的強化學習(Reinforcement Learning,RL)方法,并且給出了RL方法在網絡切片中可能存在的問題以及解決方案[3]。Hua等人針對最大化網絡切片中的系統頻譜效率(Spectral Efficiency,SE)、系統效用等參數做出了研究[4-7]。Filali等人針對服務水平協議(Service Level Agreement,SLA)滿意度以及資源塊(Resource Block,RB)分配效率、尋求最優的RB分配策略問題做出了研究[8-11]。新興的6G網絡預計將為異構需求提供更多的服務,這是由許多垂直行業創建的[12],因此網絡切片的類型更加多樣,粒度需要更加精細,且可能發生動態變化。基于上述挑戰,本文針對多基站多切片、切片類型動態變化場景下的資源分配問題做出了研究,提出了一種更加智能化的算法,并通過仿真驗證了算法的性能。


本文詳細內容請下載:

http://m.jysgc.com/resource/share/2000006353


作者信息:

邵鋒1,孫君1,2

(1.南京郵電大學 通信與信息工程學院,江蘇 南京 210003;

2.江蘇省無線通信重點實驗室,江蘇 南京 210003)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲自偷精品视频自拍| 国产午夜影视大全免费观看| 免费在线观看黄色毛片| 538在线精品| 女人张开腿让男人桶免费网站| 中文字幕日韩一区二区不卡| 欧美精品xxxxbbbb| 国产久视频观看| 91青青草视频在线观看| 好爽好黄的视频| 久久精品无码专区免费东京热 | 直接观看黄网站免费视频| 四虎影视永久免费观看网址 | 老子影院午夜理伦手机| 国产农村乱子伦精品视频| 99久久久久久久| 奶水哺乳理论电影| 一级毛片视频免费| 日韩美女在线观看一区| 亚洲国产成人综合精品| 欧美老少配性视频播放| 亚洲色大成网站www永久男同| 男女免费观看在线爽爽爽视频| 国产国产人免费人成成免视频| 99在线热视频| 夫前被强行侵犯在线观看| 一区二区和激情视频| 性放荡日记高h| 中文亚洲av片不卡在线观看| 搞av.com| 中文字幕欧美一区| 无码专区aaaaaa免费视频| 久久99国产精品久久99果冻传媒| 日本亚州视频在线八a| 亚洲国产精品一区二区九九| 精品国产一区二区三区不卡| 国产成人精品无码片区在线观看| A级毛片无码免费真人| 把极品白丝班长啪到腿软| 久久久一本精品99久久精品66| 日本卡一卡2卡三卡4卡无卡|