《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > OFDM水聲通信定時同步的FPGA實現
OFDM水聲通信定時同步的FPGA實現
摘要: 正交頻分復用(OrthogonalFrequencyDivisionMultiplexing,OFDM)技術是一種多載波調制技術,它將寬帶信道分解為相互正交的一組窄帶子信道,利用各個子信道進行并行數據傳輸,因此其頻譜利用率高、抗多徑衰落能力強。
Abstract:
Key words :

正交頻分復用(Orthogonal Frequency DivisionMultiplexing,OFDM" title="OFDM">OFDM)技術是一種多載波調制技術,它將寬帶信道分解為相互正交的一組窄帶子信道,利用各個子信道進行并行數據傳輸,因此其頻譜利用率高、抗多徑衰落能力強。目前已經在數字視頻廣播(DVB-T2)、無線局域網(802.11a/g)等系統中成功得到應用,并且成為第四代移動通信" title="通信">通信的核心技術之一。水聲" title="水聲">水聲信道是一個時、空、頻變的多徑信道,它具有強多徑、窄頻帶和強噪聲等特點,將OFDM傳輸技術應用到水聲通信中,已成為水聲通信的研究熱點之一。

  OFDM系統自身的正交多載波調制特點,決定了其對同步" title="同步">同步誤差十分敏感。能否實現準確的符號定時同步和載波頻率同步,將直接影響到OFDM通信系統的性能。由于線性調頻(Linear Frequency Modulation,LFM)信號具有良好的時頻聚集性,使得LFM信號適合作為OFDM水聲通信系統的定時同步信號。在接收端,利用LFM信號的自相關特性檢測其相關峰的位置,可以實現OFDM水聲通信系統的定時同步。

  1基本原理介紹

  OFDM水聲通信系統原理

  典型的OFDM水聲通信系統原理框圖如圖1所示。

  輸入的數據符號經過DQPSK映射成一個復數數據序列X[0],X[1],…,X[N-1],經過串并轉換后將N個并行符號調制到N個子載波上,經過IFFT后成為時域抽樣值x[n]:

  

 

  再經過添加循環前綴(Cyclic Prefix,CP)、插入LFM同步信號、D/A轉換等步驟,最后經水聲換能器轉換成聲信號在水聲信道中傳輸。在接收端,信號經接收換能器轉換成電信號,經信號調理以及A/D采集、FFT等一系列逆過程,即可完成數據符號的解調。

  

 

  為了正確恢復數據符號,本系統利用LFM信號較好的自相關特性,將其作為OFDM符號的定時同步信號。OFDM水聲通信系統發送信號的幀結構如圖2所示。在接收端采用滑動相關檢測的方法,獲得相關峰的位置,實現定時符號的準確同步,然后經過發送端的逆過程即可實現OFDM信號的解調,最后恢復出原始的數據符號。LFM信號的特點

 

  LFM信號是雷達系統中應用極為廣泛的一種大時寬一帶寬信號。LFM信號的復數表達式為:

  

 

  其中:μ=B/τ為頻率的變化斜率,B(=△f)為頻率變化范圍。實信號表示為:

  

 

  其時域波形和自相關輸出如圖3所示,可以明顯看出LFM信號的頻率在脈沖周期內按線性規律變化,自相關峰是非常尖銳的。

  

 

  LFM信號具有拋物線式的非線性相位譜,且Bτ>>1,τ為信號時寬,B為信號帶寬。因此LFM信號具有很好的脈沖壓縮特性。它的模糊函數(自相關函數)曲面具有尖銳的主峰和較低的裙邊。它對多普勒頻移不敏感,即使存在較大的多普勒頻移,它仍具有良好的脈沖壓縮特性。水聲信道具有強多途、時、空、頻變的特性,采用LFM信號作為同步信號,可以獲得較好的相關檢測性能,不會由于多途帶來明顯的偽峰。經過實驗,驗證了LFM信號作為系統的同步信號可以獲得較好的同步性能。因此本文重點討論LFM信號在FPGA" title="FPGA">FPGA上的產生和同步檢測。

  2 LFM信號的產生和檢測

  2.1 LFM信號的產生

  LFM信號的產生方法通常有I,Q兩路數字式產生法和中頻直接產生法兩種。前者實現時較復雜,適用于頻率高、帶寬大的場合。水聲信號一般工作在較低頻段,適合用中頻直接產生法產生LFM信號。根據本實驗室OFDM水聲通信系統的可用帶寬要求,利用直接數字合成(Directed Digital Synthesis,DDS)技術直接產生掃描頻率為13~16 kHz的LFM信號。

  DDS技術又可進一步分為直接數字波形合成(DDWS)和直接數字頻率合成(DDFS)兩種,二者在實現結構上略有不同。DDWS也稱為數字波形存儲直讀式波形產生系統,它把經過理想采樣的數字波形預先存儲,使用時通過查表進行D/A變換而得到所需的模擬信號。該方法產生的LFM信號基本上不受調頻斜率的限制,可以用來產生任意波形(包括復雜波形及大數據量組合波形),還可對預先存儲的數據波形進行預失真處理,提高系統的性能。本設計采用DDWS方式產生LFM信號,產生LFM的基本原理框圖如圖4所示。

  

 

  在50 MHz主時鐘的控制下,FPGA內部邏輯以120 kHz的頻率控制LFM信號的輸出,數字信號經過D/A變換后輸出階梯形的時域信號,再經過帶通濾波器濾除帶外噪聲后得到雙極性的LFM信號。

  2.2 LFM信號的檢測

  接收端對LFM同步信號的檢測,實質上是獲得LFM信號的壓縮窄脈沖的過程,以此達到同步信號提取的目的。采用的方法一般有匹配濾波法和相關提取法,匹配濾波的實現需要在頻域利用FFT和IFFT變換進行處理,它需要耗費較大的FPGA資源,復雜度較高。考慮到硬件資源和計算復雜度,本設計采用在時域滑動相關的方法實現LFM信號的檢測。該方法利用了LFM信號具有尖銳的自相關特性,根據相關運算的公式:

  

 

  當接收到的LFM信號與本地存儲的LFM信號相同時(上式中j=0),其相關值最大,出現尖銳的相關峰。圖5是采用FPGA實現LFM信號相關算法的原理框圖。

  

 

  在發送端,一個周期LFM信號的點數為256,在接收端經過A/D采樣后得到8 b的數字量,存入長度為256 B的接收緩沖區,該緩沖區設計為先進先出(First-in First-out,FIFO),作為滑動窗與本地相關序列進行相關運算。本地相關序列(存放在ROM中)與發送端發出的LFM序列相同,ROM的容量也是256×8 b。

  每完成一次A/D采樣,得到的8 b數據存入FIFO,然后執行一次相關運算,得到256個16 b的數據,然后將這256個數據相加,即得到此時刻對應的相關值(用24 b存儲)。對得到的連續256個相關值構成的序列處理后求最大值,即可判決出接收到LFM信號的位置。3實驗結果

 

  為驗證LFM信號在水聲通信中用作同步信號的性能,在實驗室水池進行了相關實驗。實驗中使用的FPGA為CycloneⅡEP2C20Q240C8,考慮到半雙工通信的情況,LFM信號的產生與檢測在同一片FPGA中實現,共使用了3 693個邏輯單元(Logic Elements,LE),占EP2C20芯片總LE的20%。實驗系統的基本框圖如圖6所示。

  

 

  圖7的示波器型號為TDS2024,各通道觀測的信號如下:

  

 

  CH1為發送端發出的LFM信號。由于D/A輸出的信號經過帶通濾波器濾波,因此信號的高頻和低頻部分有衰減。

  CH2為接收信號(換能器輸出的信號經過5 000倍放大和帶通濾波處理后)。

  CH3為接收端FPGA檢測到LFM信號后的同步脈沖輸出。

  由圖7可以看出:該方案實現了LFM信號的產生,在多徑較為嚴重的實驗室水池中,在接收端正確完成了對LFM信號的同步檢測,可以較準確地提取到LFM信號的相關峰位置,證明該方法作為OFDM水聲通信系統的定時同步方案是可行的。

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
国产精品久久夜| 亚洲国产精品成人va在线观看| 久久精品国产一区二区三区| 亚洲视频精品在线| 亚洲精品一区二区三区不| 亚洲激情成人| 国产视频久久久久久久| 欧美日韩亚洲免费| 欧美日本在线| 欧美精品三级| 欧美高清一区二区| 欧美激情区在线播放| 欧美黄色小视频| 欧美美女福利视频| 欧美日韩免费一区| 欧美日韩成人综合天天影院| 欧美日韩日本视频| 欧美午夜视频| 国产精品久久久| 国产精品久久久久久久久久久久久久| 欧美日韩一区二区在线观看| 欧美天天视频| 国产精品v欧美精品v日韩精品| 欧美午夜激情在线| 国产精品久久一区二区三区| 国产噜噜噜噜噜久久久久久久久 | 精品不卡在线| 在线视频成人| 亚洲看片一区| 亚洲一二区在线| 性感少妇一区| 最新高清无码专区| 一区二区三区 在线观看视频| 亚洲专区在线视频| 欧美在线免费观看| 久久综合网色—综合色88| 欧美激情1区2区3区| 欧美日韩一区二区三区在线看| 国产精品久久久久久亚洲毛片 | 国产日产亚洲精品系列| 极品av少妇一区二区| 亚洲国产欧美一区| 一本色道久久综合亚洲精品按摩 | 欧美精品91| 国产精品久久久久久模特| 国精品一区二区| 亚洲国产综合在线| 亚洲视频欧洲视频| 久久精品国产清自在天天线| 99pao成人国产永久免费视频| 亚洲在线中文字幕| 久久综合给合| 国产精品成人在线| 精品动漫3d一区二区三区| 亚洲精品久久| 午夜视频一区二区| 亚洲精品在线免费观看视频| 亚洲综合日韩中文字幕v在线| 久久久国产午夜精品| 欧美—级a级欧美特级ar全黄| 欧美日韩综合网| 国内成人精品2018免费看| 亚洲欧洲在线视频| 性欧美大战久久久久久久免费观看 | 理论片一区二区在线| 欧美午夜不卡视频| 激情小说另类小说亚洲欧美 | 亚洲小说区图片区| 久久色中文字幕| 欧美三级电影大全| 激情视频一区二区三区| 亚洲午夜在线观看视频在线| 亚洲激情在线| 欧美一区=区| 欧美日韩亚洲一区三区| 黄色成人av| 亚洲一区二区三区免费在线观看| 亚洲激情网址| 欧美主播一区二区三区| 欧美日韩一区二区三区在线观看免 | 亚洲电影视频在线| 亚洲欧美日韩久久精品 | 国产亚洲精品久久久| 99xxxx成人网| 亚洲国产成人在线播放| 亚洲男人第一网站| 欧美国产一区在线| 国内成+人亚洲| 亚洲女性裸体视频| 亚洲午夜激情在线| 午夜精品久久久久影视| 亚洲欧洲日夜超级视频| 亚洲一区国产| 亚洲最快最全在线视频| 久久人人97超碰精品888| 国产精品福利网站| 亚洲伦理在线| 亚洲伦理一区| 老司机精品视频网站| 国产女主播一区二区| av成人免费在线| 99视频在线精品国自产拍免费观看| 久久精品日韩欧美| 国产精品一区二区久久| 一区二区日韩欧美| 国产精品99久久久久久www| 欧美韩国一区| 亚洲国产aⅴ天堂久久| 亚洲成人资源网| 久久久999成人| 国产亚洲va综合人人澡精品| 亚洲女同性videos| 性色av香蕉一区二区| 国产精品福利在线观看| 这里只有视频精品| 亚洲影院色无极综合| 欧美特黄视频| 亚洲桃色在线一区| 亚洲欧美日韩第一区| 欧美新色视频| 国产精品99久久久久久有的能看| 亚洲视频导航| 欧美性久久久| 在线视频精品| 亚洲欧美一区二区激情| 国产精品色网| 亚洲欧美成人一区二区三区| 欧美一区二区三区免费大片| 国产精品自在欧美一区| 午夜视频在线观看一区二区| 欧美中文在线视频| 国产一区再线| 亚洲国产成人91精品 | 久久福利一区| 国内精品视频久久| 亚洲国产天堂久久国产91| 久久精品国产免费观看| 狠狠色2019综合网| 亚洲欧洲精品一区二区三区| 欧美激情一区二区久久久| 亚洲精品一级| 亚洲影视中文字幕| 国产视频一区在线观看一区免费| 午夜在线观看欧美| 蜜桃精品久久久久久久免费影院| 亚洲国产三级在线| 在线亚洲成人| 国产精品一区二区a| 久久精品国产77777蜜臀| 欧美高清成人| 一区二区三区精密机械公司 | 欧美综合二区| 一区二区在线观看视频在线观看| 亚洲国产成人tv| 欧美精选在线| 亚洲一二区在线| 久久亚洲精品中文字幕冲田杏梨| 亚洲激情偷拍| 亚洲免费影视| 黑丝一区二区| 在线视频欧美一区| 国产日韩欧美在线| 亚洲激情影院| 国产精品久久久久久久久久妞妞| 欧美与欧洲交xxxx免费观看| 欧美成人在线影院| 亚洲午夜国产一区99re久久 | 亚洲精品视频在线观看网站| 欧美午夜精品久久久久久浪潮| 性色一区二区| 欧美剧在线免费观看网站| 亚洲视频精选在线| 免费观看成人鲁鲁鲁鲁鲁视频 | 日韩视频亚洲视频| 国产欧美日韩精品专区| 亚洲精品视频在线观看网站| 国产精品久久久久久av福利软件 | 99国产精品99久久久久久| 亚洲网站视频| 狠狠入ady亚洲精品经典电影| 亚洲电影av在线| 欧美日韩三级| 久久精品国产第一区二区三区最新章节 | 国产精品爱啪在线线免费观看| 欧美在线观看天堂一区二区三区| 欧美精品激情| 欧美在线视频二区| 欧美区高清在线| 欧美一区二区三区在线视频 | 最新日韩欧美| 国产色爱av资源综合区| 中国成人在线视频| 尤物99国产成人精品视频| 午夜在线一区| 亚洲欧洲日夜超级视频| 久久九九免费视频| 亚洲一区二区三区久久| 欧美激情精品久久久久| 久久国产精品久久w女人spa| 国产精品女主播|