《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計應(yīng)用 > 果蠅優(yōu)化算法的加權(quán)策略研究
果蠅優(yōu)化算法的加權(quán)策略研究
2014年微型機與應(yīng)用第16期
杜軍俊
甘肅農(nóng)業(yè)大學(xué) 信息科學(xué)技術(shù)學(xué)院,甘肅 蘭州
摘要: 針對基本果蠅優(yōu)化算法(FOA)收斂速度慢和尋優(yōu)精度不高的缺點,在位置更新公式中引入加權(quán)因子,提出了基于線性遞減策略和先增后減策略的兩種加權(quán)果蠅優(yōu)化算法(WFOA),從而增強了種群的多樣性。通過對6個測試函數(shù)的仿真實驗,驗證了這些策略的可行性,表明這些策略能夠有效地提高算法的收斂速度和搜優(yōu)精度。經(jīng)過兩種策略的對比,發(fā)現(xiàn)線性遞減策略具有更快的收斂速度,而先增后減策略具有更強的魯棒性和稍好的尋優(yōu)精度。
Abstract:
Key words :

  摘  要: 針對基本果蠅優(yōu)化算法(FOA)收斂速度慢和尋優(yōu)精度不高的缺點,在位置更新公式中引入加權(quán)因子,提出了基于線性遞減策略先增后減策略的兩種加權(quán)果蠅優(yōu)化算法(WFOA),從而增強了種群的多樣性。通過對6個測試函數(shù)的仿真實驗,驗證了這些策略的可行性,表明這些策略能夠有效地提高算法的收斂速度和搜優(yōu)精度。經(jīng)過兩種策略的對比,發(fā)現(xiàn)線性遞減策略具有更快的收斂速度,而先增后減策略具有更強的魯棒性和稍好的尋優(yōu)精度。

  關(guān)鍵詞: 加權(quán)因子;果蠅優(yōu)化算法;線性遞減策略;先增后減策略

  果蠅優(yōu)化算法FOA(Fruit Fly Optimization Algorithm)是由臺灣博士潘文超于2011年提出的,與蟻群算法和粒子群算法類似,是基于動物群體覓食行為演化出的一種尋求全局優(yōu)化的新方法[1-3]。它不同于順序執(zhí)行的傳統(tǒng)智能算法,而是以果蠅群體自組織性和并行性為基礎(chǔ),構(gòu)造出的一種動物自治體模型。FOA有著算法簡單、控制參數(shù)少、容易實現(xiàn)、且具有一定并行性等特點,因此在各領(lǐng)域得到廣泛應(yīng)用[4]。FOA可以優(yōu)化神經(jīng)網(wǎng)絡(luò)參數(shù),已成功應(yīng)用于企業(yè)經(jīng)營績效評估、外貿(mào)出口預(yù)測、原油含水率預(yù)測等[3,5-6];FOA也可優(yōu)化支持向量機模型,已成功應(yīng)用于故障診斷、物流需求量預(yù)測等[7-8]。但由于FOA是較晚提出的一種隨機搜索算法,其在理論分析和應(yīng)用研究等方面還處于初級階段,同時也存在易發(fā)散、收斂精度不高等缺點。

  本文針對FOA收斂速度慢、收斂精度低等缺點,提出了加權(quán)果蠅優(yōu)化算法WFOA(Weighted Fruit Fly Optimization Algorithm),進(jìn)而對幾種不同加權(quán)策略下的果蠅優(yōu)化算法進(jìn)行了對比研究。

1 果蠅優(yōu)化算法及其改進(jìn)

  1.1 果蠅優(yōu)化算法

  FOA在計算方法上類似于遺傳算法,但不同的是FOA不使用雜交和變異等算子,而是通過模仿果蠅特殊的嗅覺和視覺特點來進(jìn)行搜索。果蠅的嗅覺器官能很好地搜集飄浮在空氣中的各種氣味,甚至能嗅到幾十公里以外的食物源。然后飛近食物位置,使用敏銳的視覺發(fā)現(xiàn)食物與同伴聚集的位置,并且往該方向飛去[2]。

  根據(jù)果蠅搜索食物的特性,將果蠅優(yōu)化算法歸納為以下幾個必要的步驟[1-3]:

  (1)給定群體規(guī)模Sizepop,最大迭代次數(shù)Maxgen,隨機初始化果蠅群體位置X_axis,Y_axis;

  (2)賦予果蠅個體利用嗅覺搜尋食物的方向與距離:

  Xi=X_axis+Random ValueYi=Y_axis+Random Value(1)

  (3)由于無法得知食物位置,因此先估計與原點的距離Disti,再計算味道濃度判定值Si,此值為距離的倒數(shù):

  0@1%0_ME[D283JSIG`GOP(B.png

  Si=1/Disti(3)

  (4)將味道濃度判定值代入味道濃度判定函數(shù)(或稱為適應(yīng)度函數(shù)Fitness Function),以求出果蠅個體的味道濃度Smelli:

  Smelli=Function(Si)(4)

  (5)找出該果蠅群體中味道濃度最佳的果蠅(求極小值):

  [bestSmell bestindex]=min(Smelli)(5)

  (6)記錄并保留最佳味道濃度值bestSmell與其X、Y坐標(biāo),此時果蠅群體利用視覺向該位置(Fly2)飛去,形成新的群聚位置:

  Smellbest=bestSmellX_axis=X(bestindex)Y_axis=Y(bestindex)(6)

  (7)進(jìn)入迭代尋優(yōu),重復(fù)執(zhí)行步驟(2)~步驟(5),并判斷最佳味道濃度是否優(yōu)于前一迭代最佳味道濃度,前提是當(dāng)前迭代次數(shù)小于等于Maxgen,若是則執(zhí)行步驟(6)。

  1.2 加權(quán)果蠅優(yōu)化算法(WFOA)

  在FOA中,每個果蠅個體在n維搜索空間中通過適應(yīng)度函數(shù)來衡量個體的優(yōu)劣,當(dāng)種群完成一次迭代后,與群體的歷史最佳位置比較得出新的最佳位置,進(jìn)而在新最佳位置附近繼續(xù)隨機尋優(yōu)。由式(1)可以看出,迭代搜索始終在以當(dāng)前最優(yōu)位置為中心,以隨機飛行方向與距離Random Value為半徑的領(lǐng)域內(nèi)展開,果蠅群體被限定在過分狹小的搜索范圍內(nèi),降低了種群的多樣性[9]。受PSO(粒子群算法)的慣性權(quán)重啟發(fā)[10-11],在迭代位置更新公式中引入加權(quán)因子w,將式(1)變更如下,其他步驟不變。

  Xi=w×X_axis+Random ValueYi=w×Y_axis+Random Value(7)

  在迭代尋優(yōu)過程中,希望前期具有較強的“探索”能力,即較強的全局搜索能力,以得到合適的種子,而在迭代后期,應(yīng)具有較強的“開發(fā)”能力,即較強的局部搜索能力,從而展開精細(xì)的局部搜索。前期具有較大的值,一方面是對自己“歷史經(jīng)驗”的認(rèn)可,能夠充分利用果蠅個體本身的歷史記憶;另一方面使得個體搜索的區(qū)域范圍變大,讓果蠅個體在更廣的可行域里進(jìn)行搜索,整個群體找到最優(yōu)解的概率就大,相應(yīng)的全局搜索能力就強。隨著迭代進(jìn)行到后期,需要較小的w值,使其可搜索的范圍相對縮小,這時主要根據(jù)隨機飛行方向與距離Random Value,在“以往經(jīng)驗”尋到的最優(yōu)解附近進(jìn)行小范圍精細(xì)搜索。

  1.3 加權(quán)因子的幾種調(diào)整策略

  策略1 線性遞減

  w1=Wmax-(Wmax-Wmin)/Maxgen×g(8)

  策略2 先增后減

  令d=g/Maxgen,則有:

  w2=d+1,        0≤d≤0.4w2=-7/6×d+28/15,0.4≤d≤1(9)

  其中,g為當(dāng)前迭代數(shù),Maxgen為最大迭代數(shù),Wmax為最大加權(quán)因子,Wmin為最小加權(quán)因子。對于策略1,經(jīng)過實驗仿真,分別確定Wmax、Wmin為1.4、0.7的最佳權(quán)值范圍,隨著迭代數(shù)的變化,權(quán)值從1.4線性遞減到0.7,具體參數(shù)設(shè)置見式(8)。對于策略2,從第一次迭代開始到第Maxgen的40%代,權(quán)值從1線性遞增到1.4,而從Maxgen的40%代直至迭代結(jié)束,權(quán)值從1.4線性遞減到0.7,具體參數(shù)設(shè)置見式(9),兩種策略隨迭代的權(quán)值變化如圖1所示。

001.jpg

  由式(8)和圖1可看出,策略1在進(jìn)化初期具有很強的全局搜索能力。如果在初期能搜索到最好點,可在迭代前期達(dá)到快速收斂。由式(9)和圖1可看出,策略2在迭代開始至Maxgen的40%期間,全局搜索能力逐漸增強,而從Maxgen的40%到結(jié)束期間,其全局搜索能力逐漸減弱。由此可知,在沒有陷入局部極值的情況下,策略1比策略2應(yīng)該具有更快的收斂速度。

2 實驗仿真及結(jié)果分析

  2.1 實驗設(shè)計

  為了測試w0-FOA、w1-FOA、w2-FOA算法的尋優(yōu)性能,本文選用6個常用于優(yōu)化算法比較的基準(zhǔn)函數(shù),函數(shù)形式、搜索區(qū)間、理論極值和目標(biāo)精度如表1所示[4]。其中w0-FOA是w取固定值1,即基本FOA算法。具體參數(shù)設(shè)置為:群體規(guī)模Sizepop=30,最大迭代數(shù)Maxgen=1 000;隨機初始化果蠅群體位置為表1中各函數(shù)的搜索區(qū)間;迭代的果蠅搜尋食物的隨機飛行方向與距離區(qū)間為[-1,1]。測試軟件平臺為Windows7、MATLAB 2012b,機器主頻為2.5 GHz,內(nèi)存為2 GB。

  2.2 實驗結(jié)果與分析

  6個測試函數(shù)在固定迭代數(shù)為1 000次,分別采用w0-FOA、w1-FOA和w2-FOA經(jīng)過20次獨立運行后的標(biāo)準(zhǔn)差、優(yōu)化均值和最好解如表2~表7所示;6個測試函數(shù)在表1中指定的目標(biāo)精度下經(jīng)過20次獨立運行后的平均迭代次數(shù)和達(dá)優(yōu)率亦見表2~表7。其中,平均迭代數(shù)是達(dá)到目標(biāo)精度的迭代數(shù)平均值,達(dá)優(yōu)率為達(dá)到目標(biāo)精度的運行次數(shù)與總實驗次數(shù)之比。圖2是6個測試函數(shù)適應(yīng)度對數(shù)值進(jìn)化曲線(注:為了方便進(jìn)化曲線的顯示和觀察,本文對函數(shù)的適應(yīng)度取以10為底的對數(shù))。

  從表2、3、7可以看出,w0-FOA對f1、f2、f6未能達(dá)到目標(biāo)精度,而w1-FOA和w2-FOA都能100%達(dá)到目標(biāo)精度,并且改進(jìn)算法的收斂精度與w0-FOA的收斂精度相差11個數(shù)量級以上。從表6可以看出,雖然3種策略對f5均未達(dá)到指定的目標(biāo)精度,但是w1-FOA和w2-FOA找到的最好解要比w0-FOA找到的優(yōu)。而從表5可以看出,w1-FOA的均值和魯棒性是其中最好的,w2-FOA和w0-FOA的優(yōu)化均值相差不大,但是w2-FOA找到的最好解要比w0-FOA找到的最好解優(yōu)11個數(shù)量級。其中效果不太好的是f3函數(shù),因為此函數(shù)的全局最優(yōu)點隱藏在一條狹長的通道中,對外提供很少的信息,使算法很難辨別搜索方向,WFOA的優(yōu)勢體現(xiàn)不出。

  由圖2和表2~表7可看出,w1-FOA最多只需28.70次迭代就能達(dá)到目標(biāo)精度(除f5),w2-FOA也最多只需136.60次迭代就可達(dá)到目標(biāo)精度(除f5),由此可見,WFOA對收斂速度的影響非常顯著。

  本文提出的WFOA算法在引入加權(quán)因子的基礎(chǔ)上,對粒子群算法中的線性遞減策略和先增后減策略公式進(jìn)行了適當(dāng)?shù)膮?shù)調(diào)整,經(jīng)測試函數(shù)驗證發(fā)現(xiàn),總體上改進(jìn)算法比原算法具有更快的收斂速度和更好的收斂精度,但w1-FOA比w2-FOA具有更快的收斂速度,而w2-FOA具有更強的魯棒性和稍好的尋優(yōu)精度。值得注意的是,不同加權(quán)策略對收斂速度的影響非常明顯,如何正確選擇權(quán)值策略和適當(dāng)參數(shù),使收斂速度和收斂精度達(dá)到最佳平衡,是接下來需要研究的問題。

  參考文獻(xiàn)

  [1] PAN W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-based Systems, 2012,26:69-74.

  [2] 潘文超.果蠅最佳化演算法[M].臺北:滄海書局,2011.

  [3] 潘文超.應(yīng)用果蠅優(yōu)化算法優(yōu)化廣義回歸神經(jīng)網(wǎng)絡(luò)進(jìn)行企業(yè)經(jīng)營績效評估[J].太原理工大學(xué)學(xué)報(社會科學(xué)版),2011,29(4):1-5.

  [4] 韓俊英,劉成忠.基于細(xì)菌趨化的果蠅優(yōu)化算法[J].計算機應(yīng)用,2013,33(4):964-966.

  [5] 許智慧,王福林,孫丹丹,等.基于FOA_RBF神經(jīng)網(wǎng)絡(luò)的外貿(mào)出口預(yù)測[J].數(shù)學(xué)的實踐與認(rèn)識,2012,42(13):14-19.

  [6] 劉翠玲,張路路,王進(jìn)旗,等.基于FOA—GRNN油井計量原油含水率的預(yù)測[J].計算機仿真,2012,29(11):243-246.

  [7] 張翔,陳林.基于果蠅優(yōu)化算法的支持向量機故障診斷[J].電子設(shè)計工程,2013,21(16):90-93.

  [8] 李泓澤,郭森,李春杰.果蠅優(yōu)化最小二乘支持向量機混合預(yù)測模型[J].經(jīng)濟(jì)數(shù)學(xué),2012,29(3):103-106.

  [9] 潘峰,李位星,高琪,等.粒子群優(yōu)化算法與多目標(biāo)優(yōu)化[M].北京:北京理工大學(xué)出版社,2013.

  [10] SHI Y, EBERHART R. Empirical study of particle swarm optimization[C]. International Conference on Evolutionary,Washington: USA,1999:1945-1950.

  [11] 崔紅梅,朱慶保.微粒群算法的參數(shù)選擇及收斂性分析[J].計算機工程與應(yīng)用,2007,43(23):89-91.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲一区在线播放| 亚洲国产人成综合网站| 国产精品扒开腿做爽爽爽视频| 欧美在线你懂的| 一本色道久久综合亚洲精品不卡| 香蕉成人伊视频在线观看| 亚洲精品免费看| 在线免费观看视频一区| 国产日产精品一区二区三区四区的观看方式 | 亚洲国内高清视频| 亚洲最新在线视频| 亚洲欧洲日本mm| 在线精品观看| 精品91免费| 国内精品久久久久伊人av| 国产老肥熟一区二区三区| 欧美色视频日本高清在线观看| 久久三级福利| 欧美一区国产一区| 欧美一进一出视频| 西瓜成人精品人成网站| 亚洲一区二区免费在线| 日韩亚洲一区二区| 日韩亚洲国产欧美| 亚洲老板91色精品久久| 亚洲精品国产欧美| 亚洲日韩欧美视频| 亚洲茄子视频| 亚洲精品一线二线三线无人区| 亚洲国产成人91精品| 亚洲国产va精品久久久不卡综合| 欧美中文在线观看国产| 欧美一级视频免费在线观看| 亚洲一区二区三区四区中文| 亚洲特级毛片| 亚洲一级黄色| 亚洲欧美一区二区三区在线| 亚洲视频网站在线观看| 中文欧美字幕免费| 亚洲性感激情| 一区二区三区四区蜜桃| 亚洲午夜视频在线| 亚洲一区二区在线免费观看视频| 一本色道久久综合亚洲精品按摩| 一本色道久久综合亚洲精品高清| 妖精视频成人观看www| 在线亚洲伦理| 亚洲一区在线观看免费观看电影高清| 亚洲免费视频一区二区| 亚洲一区中文| 久久精品一区二区三区不卡牛牛| 亚洲二区视频| 亚洲精品在线三区| 亚洲精品中文字幕有码专区| 夜夜嗨一区二区| 国产精品99久久久久久久vr| 亚洲午夜av电影| 亚洲欧美日韩国产一区二区| 欧美一区二区三区日韩视频| 久久久久久久久综合| 牛人盗摄一区二区三区视频| 欧美精品一卡| 国产精品天美传媒入口| 国产在线麻豆精品观看| 亚洲成人在线视频网站| 亚洲精品一区二区在线| 日韩亚洲欧美综合| 亚洲女同同性videoxma| 久久精品国产成人| 亚洲精品专区| 欧美伊人精品成人久久综合97| 毛片一区二区| 欧美先锋影音| 狠狠色伊人亚洲综合网站色| 亚洲卡通欧美制服中文| 午夜综合激情| 99精品视频免费观看| 午夜亚洲伦理| 欧美11—12娇小xxxx| 欧美午夜宅男影院在线观看| 狠狠色狠狠色综合日日五| 99精品热视频| 亚洲第一搞黄网站| 亚洲一区二区三区三| 久久亚洲捆绑美女| 欧美日韩一区二区三区免费看| 国产亚洲午夜| 一本色道久久综合亚洲二区三区| 亚洲卡通欧美制服中文| 久久福利精品| 欧美天堂在线观看| 在线观看视频日韩| 亚洲综合色在线| 9久re热视频在线精品| 久久人人97超碰国产公开结果| 欧美三级欧美一级| 精品99视频| 亚洲男人av电影| 一本不卡影院| 久久性天堂网| 久久久综合激的五月天| 欧美午夜视频在线| 亚洲国产片色| 欧美怡红院视频| 亚洲综合首页| 欧美理论在线播放| 伊大人香蕉综合8在线视| 亚洲欧美视频一区| aa亚洲婷婷| 美女亚洲精品| 国产一区在线播放| 午夜视频在线观看一区| 亚洲欧美韩国| 亚洲午夜电影在线观看| 欧美日韩国产免费观看| 亚洲激情欧美| 亚洲免费激情| 欧美精品v国产精品v日韩精品| 亚洲成色www久久网站| 最新日韩在线视频| 欧美成人一区二区在线 | 国产亚洲精品一区二区| 亚洲欧美一级二级三级| 欧美在线视频免费播放| 国产日韩欧美亚洲一区| 性欧美8khd高清极品| 久久成人免费日本黄色| 国产综合色产在线精品| 亚洲国产精品一区在线观看不卡| 久久尤物视频| 亚洲二区在线视频| 日韩视频一区二区三区在线播放免费观看| 欧美国产先锋| 9久草视频在线视频精品| 亚洲欧美精品在线| 国产女主播视频一区二区| 午夜免费久久久久| 久久婷婷麻豆| 亚洲激情一区二区三区| 一区二区三区鲁丝不卡| 国产精品久久久久国产a级| 亚洲一区二区三区色| 久久精品一本久久99精品| 韩国美女久久| 亚洲美女尤物影院| 国产精品高清网站| 性色av一区二区怡红| 蜜臀久久99精品久久久画质超高清| 亚洲第一在线综合在线| 亚洲天堂av图片| 国产日韩一区二区三区在线播放 | 国产精品久久一卡二卡| 欧美在线视频二区| 欧美成人午夜77777| 在线视频亚洲一区| 久久久亚洲精品一区二区三区| 红杏aⅴ成人免费视频| 亚洲最快最全在线视频| 国产美女精品免费电影| 亚洲国产清纯| 欧美性猛交xxxx乱大交退制版| 欧美一级理论片| 欧美精品亚洲二区| 香蕉尹人综合在线观看| 蜜臀99久久精品久久久久久软件 | 国产乱码精品| 亚洲精品国产日韩| 国产精品一卡二卡| 亚洲经典在线看| 国产精品久久久久久久久婷婷| 亚洲成人资源网| 欧美视频日韩视频在线观看| 久久www成人_看片免费不卡| 欧美日韩成人在线观看| 午夜精彩国产免费不卡不顿大片| 欧美福利视频| 性色av一区二区三区在线观看| 欧美日本国产| 久久精品国产91精品亚洲| 欧美吻胸吃奶大尺度电影| 久久精精品视频| 国产精品国码视频| 最新国产の精品合集bt伙计| 国产精品久久久免费| 亚洲精品影视| 国内久久婷婷综合| 亚洲欧美日韩国产综合精品二区| 亚洲国产精品成人精品| 久久国产黑丝| 一本一本久久| 欧美激情精品久久久| 欧美怡红院视频一区二区三区| 欧美午夜剧场| 日韩午夜免费| 黄色小说综合网站| 性欧美在线看片a免费观看| 亚洲精选视频在线| 男人的天堂亚洲| 久久国产精品亚洲va麻豆| 国产精品大片wwwwww|