《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 經驗模態分解及其模態混疊消除的研究進展
經驗模態分解及其模態混疊消除的研究進展
2019年電子技術應用第3期
戴 婷1,張榆鋒1,章克信2,何冰冰1,朱泓萱1,張俊華1
1.云南大學 信息學院電子工程系,云南 昆明650091;2.昆明醫科大學第二附屬醫院,云南 昆明650031
摘要: 由Huang提出的經驗模態分解(Empirical Mode Decomposition,EMD)算法是一種數據驅動的自適應非線性時變信號分析方法,可以把數據分解成具有物理意義的少數幾個固有模態函數(Intrinsic Mode Function,IMF)分量。然而模態混疊會導致錯假的時頻分布,使IMF失去物理意義,嚴重影響了EMD分解的準確性與實用性。分別針對一維和多維EMD抑制模態混疊,總結歸納了相關研究取得的主要成果,指出了各方法抑制效果的改進及仍有的不足。最后討論了相關研究及應用未來的發展趨勢。
中圖分類號: TN911.7
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.182560
中文引用格式: 戴婷,張榆鋒,章克信,等. 經驗模態分解及其模態混疊消除的研究進展[J].電子技術應用,2019,45(3):7-12.
英文引用格式: Dai Ting,Zhang Yufeng,Zhang Kexin,et al. The research progress of empirical mode decomposition and mode mixing elimination[J]. Application of Electronic Technique,2019,45(3):7-12.
The research progress of empirical mode decomposition and mode mixing elimination
Dai Ting1,Zhang Yufeng1,Zhang Kexin2,He Bingbing1,Zhu Hongxuan1,Zhang Junhua1
1.Department of Electronic Engineering,Information School,Yunnan University,Kunming 650091,China; 2.The Second Affiliated Hospital of Kunming Medical University,Kunming 650031,China
Abstract: The Empirical Mode Decomposition(EMD) algorithm proposed by Huang is a data driven adaptive analysis method for nonlinear time-varying signals. The signals can be decomposed into a few Intrinsic Mode Functions(IMFs) components with physical meaning. However, Mode Mixing(MM) can lead to wrong or false components in time frequency distributions, and then cause the decomposed IMFs losing their physical meaning. This seriously affects the EMD accuracies and applications. This study reviews methods of the MM suppression in one-dimensional and multi-dimensional EMD algorithms. The results improvements and limitations in related researches are summarized. Finally, the future development trend of related researches and applications are discussed.
Key words : empirical mode decomposition(EMD);intrinsic mode function(IMF);mode mixing(MM);Hilbert transform

0 引言

    傅里葉分析技術[1]在分析時變非線性信號時存在無法表述信號的時頻局部特性的局限性[2]。為了分析處理非平穩信號,人們相繼提出了一系列新的信號分析方法:短時傅里葉變換[3]、雙線性時頻分布[4]、Gabor變換[5]、小波分析[6]、分數階傅里葉變換[7]等。這些算法從不同程度上對非平穩信號的時變性給予了恰當的描述,改進了傅里葉分析的性能[8]。然而,方法仍是全局范疇,原因在于其信號分析性能取決于基函數的選取,存在局限性。

    1998年Huang等人提出了一種全新的信號時頻分析方法——希爾伯特·黃變換(Hilbert-Huang Transform,HHT)[9]。該方法首先采用經驗模態分解(Empirical Mode Decom-position,EMD)算法將非平穩信號逐級分解為若干個固有模態函數(Intrinsic Mode Function,IMF)和一個殘余量,然后再對各個IMF分量進行希爾伯特變換(Hilbert Transform,HT)得到能夠準確反映信號能量在空間(或時間)各尺度上的分布規律[9]的Hilbert譜[10]。EMD具有數據驅動的自適應性,能分析非線性非平穩信號,不受Heisenberg測不準原理[11]制約等優點。

    然而,Huang提出的基于篩分(Sifting)算法的EMD得到的IMF分量[12]存在模態混疊(Mode Mixing,MM)[9]。模態混疊的出現不僅會導致錯假的時頻分布,也使IMF失去物理意義。圍繞模態混疊的消除或抑制,國內外開展了一系列的研究,并獲得不同程度的效果。本文分別針對一維和多維EMD抑制模態混疊,總結歸納了相關研究取得的主要成果,指出了各方法抑制效果的改進及仍有的不足。最后討論了相關研究及應用未來的發展趨勢。

1 經驗模態分解及模態混疊

    EMD自適應的逐級分解[13]過程中,IMF必須滿足以下兩個條件:(1)信號極值點和零點數相同或相差一個;(2)由信號局部極大、小值點擬合的上、下包絡線的局部均值為零,也即上下包絡線關于時間軸局部對稱[14]。設待分解信號為X(t),EMD算法的計算步驟如下[9]

zs2-gs1.gif

    式(1)說明EMD分解具有完備性[9],信號X(t)經分解后還能通過所有IMF及剩余分量被精確重構出來。

    EMD在非線性非平穩信號分析中具有顯著優勢。與傳統時頻分析技術相比,EMD無需選擇基函數,其分解基于信號本身極值點的分布。而算法本身缺少完整的理論基礎,在實際計算與應用中還存在著許多不足,包括模態混疊[15]、端點效應[16]、篩分迭代停止標準[12]等。一般情況下,每個固有模態函數只包含一種頻率成分,不存在模態混疊的現象。但是,當信號中存在由異常事件(如間斷信號、脈沖干擾和噪聲等)引起的間歇(Intermittency)現象時,EMD的分解結果就會出現模態混疊[9]

2 集合經驗模態分解

    為克服EMD的模態混疊,2009年Wu和Huang提出一種噪聲輔助信號分析方法——集合經驗模態分解(Ensemble EMD,EEMD)[17]。該算法利用EMD濾波器組[18]行為及白噪聲頻譜均勻分布的統計特性[19],使Sifting過程信號極值點分布更趨勻稱,有效抑制由間歇性高頻分量等因素造成的模態混疊。設待分解信號為X(t),EEMD算法的計算步驟如下[17]

zs2-2-x1.gif

zs2-gs2.gif

    然而,在EEMD中,每個加噪信號 hi(t)獨立地被分解,使得每個 hi(t)分解后可能產生不同數量的IMF,導致集合平均時IMF分量對齊困難。此外,添加的白噪聲幅值和迭代次數依靠人為經驗設置,當數值設置不當時,無法克服模態混疊[20]。雖然增加集合平均次數可降低重構誤差,但這是以增加計算成本為代價,且有限次數的集合平均并不能完全消除白噪聲,導致算法重構誤差大,分解完備性差[21]

3 互補集合經驗模態分解

    Yeh等于2010年提出了互補集合經驗模態分解(Complementary EEMD,CEEMD)[22]。該方法向原始信號中加入正負成對的輔助白噪聲,在集合平均時相消,能有效提高分解效率,克服EEMD重構誤差大、分解完備性差的問題。設待分解信號為X(t),CEEMD算法的計算步驟如下[22]

zs2-3-x1.gif

zs2-3-x2.gif

4 自適應噪聲的完整集合經驗模態分解

    為解決集合平均時IMF分量對齊問題,TORRES M E等在2011年從分解過程和添加白噪聲上對CEEMD進行改進,提出了自適應噪聲的完整集合經驗模態分解(Complete EEMD with Adaptive Noise,CEEMDAN)[24]。設待分解信號為X(t),定義操作算子Ek(·)來表示信號經過EMD分解后得到的第k階固有模態分量,CEEMDAN算法可描述如下[24]

zs2-4-x1.gif

zs2-4-x2.gif

    Wu和Huang建議[17]使用小振幅值來處理由高頻信號支配的數據,反之則增大噪聲幅值。在分解過程中添加的是白噪聲經EMD分解得到的各階IMF分量,最后重構信號中的噪聲殘余比EEMD的結果小,降低了篩選次數。另一方面,各組信號經CEEMDAN分解出第一階固有模態分量后立即進行集合平均,避免了CEEMD中各組IMF分解結果差異造成最后集合平均難以對齊的問題,也避免了其中某一階IMF分解效果不好時,將影響傳遞給下一階,影響后續分解。盡管如此,CEEMDAN仍然有一些需要改進的方面[23],如 IMF仍包含殘余噪聲;在分解的早期階段,信號會出現一些“虛假”模式,導致在前兩階或三階模態中仍包含了大量的噪聲和信號的相似尺度[24,26]

5 改進的自適應噪聲集合經驗模態分解

    針對CEEMDAN存在的殘余噪聲及“虛假”模式問題,TORRES M E等試圖估計每次分解剩余分量rk的“真實”平均包絡,進一步提出了改進算法[23]。定義M(·)為對信號進行局部包絡平均運算,即取信號上下包絡的平均值;ni(t)表示方差為1的零均值白噪聲。設待分解的信號為X(t),改進的CEEMDAN算法描述如下[23]:

zs2-5-x1.gif

zs2-5-x2.gif

    (6)判斷是否滿足終止條件,若滿足,則停止分解。

    與EEMD和CEEMDAN相比,改進的CEEMDAN引入局部包絡平均減小殘余噪聲;在分解過程中,依次計算IMF,保證了分解的完整性,信號重構誤差更小。但計算量過大,實時性有待進一步改進[23,27]

6 多維經驗模態分解及其噪聲輔助的模態混疊抑制

    將EMD直接用于分解多通道信號時存在各通道IMF分量在數量和頻率尺度上難以對齊問題,使得重構后各通道信號難以保持信號原有的相位關系[28]。Rehman等人在2010年提出了能夠同時處理多通道信號的多維經驗模態分解(Multivariate EMD,MEMD)[28]。在此基礎上,將白噪聲作為信號其中一維或多維加入進行MEMD處理,提出了噪聲輔助多維經驗模態分解(Noise Assisted MEMD,NA-MEMD)[29-30]。由于白噪聲具有頻譜均勻分布的統計特性,該算法能有效抑制經驗模態分解存在的模態混疊。

6.1 多元經驗模態分解

zs2-6.1-x1.gif

zs2-6.1-x2.gif

    MEMD 的提出解決了多通道信號的模式校準問題。但MEMD分解也會得到一些虛假分量,仍存在模態混疊問題[33],影響對后續的特征提取。

6.2 噪聲輔助的多元經驗模態分解

zs2-6.2-x1.gif

    NA-MEMD方法是EMD的多變量噪聲擴展形式,算法不但充分利用了MEMD處理白噪聲時具有的固定通帶的頻率特性,而且加入額外的獨立白噪聲確保分解后信號與噪聲的IMF分量完全可分離。相較于基于EEMD分解的方法無需進行IMF的集合平均,提高了計算效率,減小了噪聲干擾,性能更為優越[33,34]

7 結論

    EMD將信號進行平穩化處理的過程中存在模態混疊,影響該方法的性能及應用。本文圍繞模態混疊抑制,總結歸納了一維及多維EMD研究方面的主要工作。EEMD雖然能有效抑制模態混疊,但在分解過程中添加的輔助白噪聲最終需要增加集合平均次數來抵消,計算耗時長,重構誤差大。CEEMD在抑制模態混疊的同時正負成對噪聲相消,部分降低了殘留噪聲的影響,減輕了集合平均抑制添加白噪聲的負擔,提高了計算效率。CEEMDAN及其改進方法在每次分解時添加白噪聲的IMF分量,添加噪聲逐級減少,固有模態分量中殘留噪聲更少,有效減小了重構誤差,且在分解的每個階段都有一個全局停止標準,分解效率最高。MEMD對多維信號同時進行分解,確保了各通道IMF分量在數量和尺度上相匹配,重構的各通道信號間的相位無畸變。但由于其采用與EMD算法相一致的思想, MIMF也會存在模態混疊。NA-MEMD通過引入輔助噪聲通道,消除了MEMD中存在的模態混疊,同時還保證了信號分解的完備性,分解性能最優,但由于多維空間極值點包絡及局部均值的估計算法過于復雜,計算量最大。特別是對空間單位球面的采樣顯著增加了采樣,導致計算量快速增加,分解效率最差。因而需要在計算精度和復雜度之間折衷考慮。

    針對模態混疊抑制,未來還可以從添加的輔助信號形態、發生模態混疊的IMF再處理及對信號濾波后再分解三個方面展開探索。此外,從理論上深入研究EMD處理過程中模態混疊發生的機理也有助于探索新的抑制方法,提高EMD算法的精度和效率,提升其應用水平和適應范圍。

參考文獻

[1] STEIN E M,WEISS G L.Introduction to Fourier analysis on Euclidean spaces[M].Princeton University Press,1971,212(2):484-503.

[2] BIRKHOFF G.A limitation of fourier analysis[J].Journal of Mathematics and Mechanics,1967,17(5):443-447.

[3] GRIFFIN D,LIM J S.Signal estimation from modified short-time Fourier transform[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1984,32(2):236-243.

[4] LOUGHLIN P J,PITTON J W,ATLAS L E.Bilinear time-frequency representations: new insights and properties[J].IEEE Transactions on Signal Processing,1993,41(2):750-767.

[5] QIAN S E,CHEN D P.Discrete Gabor transform[J].IEEE Transactions on Signal Processing,1993,41(7):2429-2438.

[6] MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674-693.

[7] ALMEIDA L B.The fractional Fourier transform and time-frequency representations[J].IEEE Transactions on Signal Processing,1994,42(11):3084-3091.

[8] ROEPSTORFF G.Fourier decomposition[M].Path Integral Approach to Quantum Physics.Springer Berlin Heidelberg,1994.

[9] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.

[10] HUANG N E,WU Z H,LONG S R,et al.On instantaneous frequency[J].Advances in Adaptive Data Analysis,2009,1(2):177-229.

[11] HEISENBERG W.Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J].Zeitschrift Für Physik,1927,43(3-4):172-198.

[12] CHENG J S,YU D J,YANG Y.Research on the intrinsic mode function(IMF)criterion in EMD method[J].Mechanical Systems and Signal Processing,2006,20(4):817-824.

[13] HUANG N E,WU M L C,LONG S R,et al.A confidence limit for the empirical mode decomposition and hilbert spectral analysis[J].Mathematical,Physical and Engineering Sciences,2003,459(2037):2317-2345.

[14] WANG G,CHEN X Y,QIAO F L,et al.On intrinsic mode function[J].Advances in Adaptive Data Analysis,2010,2(3):277-293.

[15] HU X Y,PENG S L,HWANG W L.EMD revisited:a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals[J].IEEE Transactions on Signal Processing,2012,60(3):1075-1086.

[16] SU Y X,LIU Z G,LI K L,et al.A new method for end effect of EMD and its application to harmonic analysis[J].Advanced Technology of Electrical Engineering and Energy,2008,27(2):33.

[17] WU Z H,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Ad vances in Adaptive Data Analysis,2009,1(1):1793-5369.

[18] FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.

[19] WU Z H,HUANG N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Mathematical,Physical and Engineering Sciences,2004,460(2046):1597-1611.

[20] HUANG N E,SHEN S S P.Hilbert-Huang transform and its applications[M].World Scientific,2005.

[21] HELSKE J,LUUKKO P.Ensemble empirical mode decomposition(EEMD) and its completevariant (CEEMDAN)[J].International Journal of Public Health,2015,60(5):1-9.

[22] YEH J R,SHIEH J S,HUANG N E.Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J].Advances in Adaptive Data Analysis,2010,2(2):135-156.

[23] COLOMINAS M A,SCHLOTTHAUER G,TORRES M E.Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J].Biomedical Signal Processing and Control,2014,14(1):19-29.

[24] TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A complete ensemble empirical mode decomposition with adaptive noise[C].2011 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2011:4144-4147.

[25] COLOMINAS M A,SCHLOTTHAUER G,TORRES M E,et al.Noise-assisted emd methods in action[J].Advances in Adaptive Data Analysis,2012,4(4):1793-5369.

[26] COLOMINAS M A,SCHLOTTHAUER G,FLANDRIN P,et al.Descomposición empírica en modos por conjuntos completa con ruido adaptativo y aplicaciones biomédicas[C].XVIII Congreso Argentino de Bioingeniería SABI 2011-VII Jornadas de Ingeniería Clínica.2011.

[27] HUMEAU-HEURTIER A,ABRAHAM P,MAHE G.Analysis of laser speckle contrast images variability using a novel empirical mode decomposition: comparison of results with laser Doppler flowmetry signals variability[J].IEEE Transactions on Medical Imaging,2015,34(2):618-627.

[28] REHMAN N U,MANDIC D P.Multivariate empirical mode decomposition[J].Mathematical,Physical and Engineering Sciences,2010,466(2117):1291-1302.

[29] REHMAN N U,MANDIC D P.Filter bank property of multivariate empirical mode decomposition[J].IEEE Transactions on Signal Processing,2011,59(5):2421-2426.

[30] REHMAN N U,PARK C,HUANG N E,et al.EMD via MEMD:multivariate noise-aided computation of standard EMD[J].Advances in Adaptive Data Analysis,2013,5(2):1793-5369.

[31] MANDIC D P,REHMAN N U,WU Z H,et al.Empirical mode decomposition- based time-frequency analysis of multivariate signals:the power of adaptive data analysis[J].IEEE Signal Processing Magazine,2013,30(6):74-86.

[32] CUI J J,FREEDEN W.Equidistribution on the Sphere[M].Society for Industrial and Applied Mathematics,1997,18(2):595-609.

[33] PARK C,LOONEY D,REHMAN N U,et al.Classification of motor imagery BCI using multivariate empirical mode decomposition[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2013,21(1):10-22.

[34] LOONEY D,MANDIC D P.Multiscale image fusion using complex extensions of EMD[J].IEEE Transactions on Signal Processing,2009,57(4):1626-1630.




作者信息:

戴  婷1,張榆鋒1,章克信2,何冰冰1,朱泓萱1,張俊華1

(1.云南大學 信息學院電子工程系,云南 昆明650091;2.昆明醫科大學第二附屬醫院,云南 昆明650031)

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲福利视频二区| 亚洲欧美在线一区二区| 国产精品白丝黑袜喷水久久久 | 久久精品国产精品 | 欧美一区二区在线观看| 亚洲字幕在线观看| 亚洲一区二区在线观看视频| 在线一区二区三区四区五区| aa国产精品| 一本久久a久久免费精品不卡| 亚洲欧洲一级| 亚洲精品久久| 亚洲美女一区| 99在线精品观看| 一区二区欧美在线| 亚洲一区二区四区| 亚洲视频电影图片偷拍一区| 亚洲视频一起| 亚洲免费影视第一页| 香蕉久久夜色精品国产| 性8sex亚洲区入口| 久久九九有精品国产23| 久久夜色精品国产| 欧美成人有码| 欧美日韩高清一区| 欧美性色综合| 国产女人水真多18毛片18精品视频| 国产精品综合| 国内成人精品一区| 亚洲国产精品一区二区www在线| 亚洲日本成人在线观看| 99亚洲视频| 亚洲一区精品电影| 午夜欧美电影在线观看| 亚洲国产成人tv| 日韩一本二本av| 亚洲中午字幕| 午夜亚洲激情| 久久精品99久久香蕉国产色戒| 久久婷婷av| 欧美日韩播放| 国产精品国产三级国产普通话三级| 久久www免费人成看片高清| 久久久天天操| 欧美va亚洲va香蕉在线| 欧美日韩中文字幕| 国产美女搞久久| 亚洲电影中文字幕| 一区二区三区 在线观看视| 欧美亚洲视频在线看网址| 亚洲日产国产精品| 亚洲女同性videos| 久久免费精品视频| 欧美日韩在线影院| 国产一区二区在线观看免费| 亚洲精品乱码久久久久| 午夜精品电影| 99re亚洲国产精品| 久久久久高清| 欧美色播在线播放| 激情小说另类小说亚洲欧美| 夜夜嗨av一区二区三区免费区| 欧美一区二区视频在线观看| 日韩午夜精品| 久久久久久久久蜜桃| 欧美日韩一区二区三区在线看| 国产日韩欧美一区二区三区在线观看| 在线欧美亚洲| 亚洲影院高清在线| 日韩午夜一区| 久久久久成人精品| 国产精品成人播放| 国产精品久久久久久超碰| 欧美日韩在线影院| 曰韩精品一区二区| 亚洲男人第一av网站| 亚洲美女免费精品视频在线观看| 羞羞答答国产精品www一本| 欧美大色视频| 国产精品夜夜夜一区二区三区尤| 亚洲国产精品一区二区第一页| 欧美亚洲尤物久久| 亚洲一区二区三区精品视频| 牛牛影视久久网| 国产日韩欧美一区二区| 亚洲视频电影图片偷拍一区| 亚洲人体影院| 久久精品国产久精国产思思| 欧美视频中文在线看 | 麻豆精品在线视频| 国产欧美一区二区白浆黑人| aa日韩免费精品视频一| 亚洲九九精品| 免费高清在线一区| 国产一区视频在线观看免费| 亚洲欧美激情精品一区二区| 宅男精品视频| 欧美欧美天天天天操| 在线观看视频欧美| 久久国产精彩视频| 欧美在线3区| 国产精品女主播在线观看| 99一区二区| 亚洲色在线视频| 欧美日韩精品是欧美日韩精品| 在线精品亚洲| 亚洲大胆美女视频| 久久天天躁狠狠躁夜夜av| 国产亚洲欧美中文| 欧美亚洲一区在线| 欧美在线一区二区| 国产目拍亚洲精品99久久精品| 亚洲一区三区在线观看| 亚洲性图久久| 国产精品成人一区二区艾草| 一本色道久久综合狠狠躁篇怎么玩 | 一本一本久久| 亚洲色无码播放| 欧美性大战久久久久久久| 99国产精品久久久久老师| 亚洲视频福利| 国产精品成人一区二区三区夜夜夜 | 国产欧美一区二区精品性| 亚洲免费网址| 欧美在线视频全部完| 国产午夜精品福利| 亚洲第一区在线| 欧美高清视频在线观看| 亚洲精品1区2区| 夜夜嗨av一区二区三区免费区| 欧美日韩精品综合在线| 一区二区三区视频在线观看| 午夜精品成人在线视频| 国产日韩欧美视频在线| 亚洲电影免费观看高清完整版| 美日韩精品免费观看视频| 亚洲精华国产欧美| 亚洲一区二区视频| 国产乱码精品一区二区三区五月婷 | 久久综合中文| 亚洲韩国精品一区| 一区二区三区免费网站| 国产精品美女一区二区在线观看| 亚洲一卡二卡三卡四卡五卡| 久久精品1区| 亚洲国产精品一区制服丝袜| 亚洲视频网站在线观看| 国产精品最新自拍| 久久国产精品久久久| 欧美激情在线免费观看| 中文在线资源观看网站视频免费不卡 | 欧美专区18| 亚洲国产精品久久久久| 在线视频一区二区| 国产精品久久久久久久久久尿 | 国内精品久久久久影院薰衣草| 亚洲激情在线播放| 国产精品成人一区| 欧美资源在线| 欧美日韩国产高清| 校园春色综合网| 欧美激情亚洲另类| 亚洲在线观看免费| 欧美成人免费小视频| 一区二区精品在线| 久久婷婷久久| 一本一道久久综合狠狠老精东影业| 久久精品国产91精品亚洲| 91久久黄色| 欧美一区二区精品久久911| 在线日韩欧美视频| 亚洲欧美在线一区二区| 在线成人国产| 午夜在线观看欧美| 亚洲国产欧美在线人成| 亚洲欧美日韩成人| 亚洲激情在线激情| 久久精品视频在线观看| 亚洲美女av网站| 久久亚洲一区二区| 在线视频日韩| 久久综合久久综合久久综合| 在线一区日本视频| 欧美jizzhd精品欧美巨大免费| 亚洲综合首页| 欧美日韩不卡一区| 亚洲第一区在线观看| 国产精品嫩草影院一区二区| 亚洲人成精品久久久久| 国产精品一区二区三区乱码 | 国产一级揄自揄精品视频| 一区二区三区久久久| 精久久久久久| 欧美在线视频a| 一本色道久久综合亚洲精品高清 | 欧美日本网站| 久久精品国亚洲| 国产精品美女在线| 亚洲视频一起| 91久久精品美女高潮|