《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 信貸自動審批模型的對抗攻擊風險研究
信貸自動審批模型的對抗攻擊風險研究
信息技術與網絡安全 2期
林琴萍1,李 庚1,崔潤邦2,鄧 江2
(1.天津大學 管理與經濟學部,天津300072;2.北京泛鈦客科技有限公司,北京100124)
摘要: 近期,銀行等金融機構引進自動信貸審批系統來取代傳統的人工審批,而自動信貸審批系統在何種程度上會受到對抗樣本的攻擊有待研究。通過實驗對信貸對抗樣本攻擊的問題進行了驗證。首先,基于申請人的信貸數據對XGBoost模型進行訓練,預測申請人行為,并選擇原始樣本。其次,使用“非違約申請人”對改進的GAN模型進行訓練,并用于生成特征值,通過修改原始樣本以構建對抗樣本,使得修改后的特征值接近于“非違約申請人”密集分布的特征值。最后,使用訓練好的XGBoost模型將對抗樣本進行分類。在實驗中生成的對抗樣本可以混淆XGBoost模型。當修改后的特征值的數量增加時,對抗樣本的生成率總體呈上升趨勢。實驗驗證,對抗樣本的攻擊將對自動信貸審批系統造成安全風險。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.02.009
引用格式: 林琴萍,李庚,崔潤邦,等. 信貸自動審批模型的對抗攻擊風險研究[J].信息技術與網絡安全,2022,41(2):53-60.
Research on adversarial attack risk of automatic credit approval model
Lin Qinping1,Li Geng1,Cui Runbang2,Deng Jiang2
(1.College of Management and Economics,Tianjin University,Tianjin 300072,China; 2.Beijing Fantastic Technology Ltd.,Beijing 100124,China)
Abstract: Recently, many banks and other financial institutions have introduced automated credit approval systems to replace the traditional manual approval. Automatic credit approval system is vulnerable to attack from adversarial examples. This paper presents an experiment of credit adversarial examples attack.Firstly, the XGBoost model is trained based on all applicants′ credit data to predict applicant behavior and select the original sample. Secondly, the ′Non-default applicant′ is used to train the improved GAN model and generate eigenvalues, and then some features of the original sample are modified to construct the confrontation sample. The modified eigenvalue is close to the eigenvalue of the dense distribution of ′Non-default applicant′. Finally, the trained XGBoost model is used to classify the confrontation examples. We find that in the experiment, the generated confrontation examples can confuse the XGBoost model. When the number of modified eigenvalues increases, the generation rate of confrontation examples is on the rise. In short, the experiment shows that the attack from adversarial examples will pose security risks to the automatic credit approval system.
Key words : credit loan;adversarial attack;adversarial examples;generative adversarial networks

0 引言

信貸審批是指銀行等金融機構基于采集信息獲取信貸分數,篩選出潛在的“違約”申請人,并決定最終是否向申請人放貸的過程。據調查,約有80%的信貸風險來源于信貸審批環節。數據顯示,一旦申請人獲得了信貸審批,后續的管理便只能控制住20%的風險。因此,加強針對這一環節的金融風險管控對銀行等金融機構而言具有重要意義。近年來,信貸審批所需的數據集規模日益增大,人工信貸審批效率低下且繁雜,已經難以滿足日常業務需求。為改善客戶體驗,提高審批效率,銀行等金融機構引進了自動信貸審批系統以取代人工審批。相比于人工審批,自動信貸審批系統通常采用高性能的機器學習模型作為信貸評分模型,可以精確地捕捉申請人的風險偏好、消費習慣和個人信用狀況。因此,自動信貸審批系統下的審批過程更快速、更精準、更全面。自動信貸審批系統已經被廣泛應用于信用信貸、汽車信貸、抵押貸款等業務中,代表了金融技術升級方向和信用智能化趨勢。

信貸數據的安全性正成為嚴峻挑戰,數據泄露事件頻發給銀行業、金融業造成了難以估量的損失。例如,2019年7月,美國最大的商業銀行——第一資本金融公司發現,其銀行系統遭受黑客入侵,導致超過一億個申請人數據(包括電話號碼、年齡、工資、信用額度、交易信息和信用評分等)泄露。除了數據泄露等傳統安全問題之外,機器學習領域特有的“對抗樣本攻擊”通過對原始樣本進行微小調整,可以使原始模型得出高置信度下的錯誤分類,也成為信貸自動審批系統所面臨的重大挑戰。



本文詳細內容請下載:http://m.jysgc.com/resource/share/2000003951




作者信息:

林琴萍1,李  庚1,崔潤邦2,鄧  江2

(1.天津大學 管理與經濟學部,天津300072;2.北京泛鈦客科技有限公司,北京100124)


微信圖片_20210517164139.jpg




此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产精品公开免费视频| 小雪你好紧好烫好爽| 亚洲国产欧美精品| 狼人香蕉香蕉在线视频播放| 四虎国产永久在线观看| 门国产乱子视频观看| 国产无遮挡又黄又爽在线视频| 91短视频在线免费观看| 天堂8在线天堂资源bt| 一级做a爰片性色毛片16美国| 无码人妻精品一区二区三区蜜桃| 久久精品中文字幕一区| 杨晨晨脱得一二净无内裤全身 | 色综合久久综合网| 国产女人水真多18毛片18精品| 18禁网站免费无遮挡无码中文| 国内精品久久久人妻中文字幕 | 久久久午夜精品福利内容| 日韩福利小视频| 亚洲中文精品久久久久久不卡| 欧美换爱交换乱理伦片试看| 亚洲欧美日韩在线精品一区二区| 漂亮人妻洗澡被公强| 人妻av一区二区三区精品| 男女性潮高清免费网站| 免费看男阳茎进女阳道动态图| 精品无人区一区二区三区a| 啊灬啊灬用力灬别停岳视频| 色偷偷的xxxx8888| 国产a级黄色毛片| 色av.com| 国产一级理仑片日本| 菠萝蜜国际通道麻豆三区| 国产乱码精品一区二区三区中文| 风间由美性色一区二区三区| 国产在线果冻传媒在线观看 | 少妇饥渴XXHD麻豆XXHD骆驼| 东北妇女精品BBWBBW| 成人18xxxx网站| 一级毛片完整版| 尤物视频网站在线|