《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于5G架構超密集組網粒子群優化算法改進
基于5G架構超密集組網粒子群優化算法改進
2023年電子技術應用第1期
彭昇1,趙建保2,魏敏捷3
1.上海電力大學 電子信息工程學院,上海 201306;2.國網信息通信產業集團有限公司,北京 102200; 3.上海電力大學 電氣工程學院,上海 201306
摘要: 隨著移動通信技術的發展,傳統智能終端設備無法滿足快速增長的海量數據計算要求,移動邊緣計算為物聯網中移動用戶提供了低延遲和靈活的計算方案。綜合考慮邊緣服務器上有限的計算資源以及網絡中用戶的動態需求,提出通過二進制粒子群優化算法分配發射功率優化傳輸能耗。將請求卸載與資源調度作為雙重決策問題進行分析,基于粒子群優化算法提出了一種新的多目標優化算法求解該問題。仿真結果表明,二進制粒子群優化算法可以節省傳輸能耗,且具有良好的收斂性。所提出的新算法在響應率方面優于現有算法,在動態邊緣計算網絡中可以保持良好的性能。
中圖分類號:TN929.5;TN301.6
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223278
中文引用格式: 彭昇,趙建保,魏敏捷. 基于5G架構超密集組網粒子群優化算法改進[J]. 電子技術應用,2023,49(1):69-74.
英文引用格式: Peng Sheng,Zhao Jianbao,Wei Minjie. Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture[J]. Application of Electronic Technique,2023,49(1):69-74.
Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture
Peng Sheng1,Zhao Jianbao2,Wei Minjie3
1.College of Electronic Information Engineering,Shanghai University of Electric Power, Shanghai 201306, China; 2.State Grid Information and Telecommunication Group Co., Ltd., Beijing 102200, China; 3.College of Electrical Engineering,Shanghai University of Electric Power, Shanghai 201306, China
Abstract: With the development of mobile communication technology, traditional intelligent terminal devices cannot meet the rapidly growing massive data computing requirements. Mobile edge computing provides low-latency and flexible computing solutions for mobile users in the Internet of Things. Considering the limited computing resources on the edge server and the dynamic needs of users in the network, this paper proposes to allocate the transmit power to optimize the transmission energy consumption through the binary particle swarm optimization algorithm. Analyzing request offloading and resource scheduling as a dual decision-making problem, a new multi-objective optimization algorithm based on particle swarm optimization algorithm is proposed to solve the problem. The simulation results show that the binary particle swarm optimization algorithm can save transmission energy and has good convergence. The proposed new algorithm outperforms existing algorithms in terms of response rate and can maintain good performance in dynamic edge computing networks.
Key words : edge computing;resource optimization;particle swarm optimization;task offloading

0 引言

    隨著移動通信技術的迅速發展,物聯網中的終端設備(例如智能手機、智能家居、智能汽車等)都可以通過互聯網來進行相互連接[1]。近年來,移動設備類型及數量呈指數增長,目前移動設備往往為了具備便攜性與簡易性,而缺乏足夠的計算能力及容量來滿足應用的服務質量要求。移動邊緣計算(Mobile Edge Computing,MEC)是物聯網邊端設備執行計算請求的方法[2],移動網絡運營商與云服務提供商在邊端服務器中部署豐富的計算資源,在邊端中對移動終端設備所產生的大量數據進行計算處理。

    邊緣計算資源調度的核心觀點是通過優化移動邊緣計算來提高計算資源與能力從而滿足用戶的需求。網絡運營商開始普遍構建5G架構的超密集組網(Ultra-Dense Network,UDN)多基站協同服務場景[3]。在UDN中通過部署宏基站(Macro-cell Base Station,MBS)與多個微基站(Small-cell Base Station,SBS)實現極高的頻率復用,極大提高了覆蓋地區的系統容量與計算能力。




本文詳細內容請下載:http://m.jysgc.com/resource/share/2000005079




作者信息:

彭昇1,趙建保2,魏敏捷3

(1.上海電力大學 電子信息工程學院,上海 201306;2.國網信息通信產業集團有限公司,北京 102200;

3.上海電力大學 電氣工程學院,上海 201306) 




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 新97人人模人人爽人人喊| 久久九色综合九色99伊人| 久久人人爽人人爽人人片av不| 一级特黄录像视频免费| 2020精品国产自在现线看| 色视频在线观看免费| 澡人人澡人澡人人澡天天| 日韩人妻无码专区精品| 天天爽天天爽夜夜爽毛片| 国产无遮挡吃胸膜奶免费看| 午夜在线观看福利| 亚洲中文字幕久久精品无码a | 无码人妻H动漫中文字幕| 在线视频中文字幕| 国产丰满麻豆videossexhd| 亚洲精品成人网久久久久久| 久久久噜噜噜久久久| 7777精品伊人久久久大香线蕉| 翁想房中春意浓1-28| 欧美69式视频在线播放试看| 好多水好硬好紧好爽视频| 国产成人综合久久精品红| 人妻少妇无码精品视频区 | 疯狂做受xxxx高潮视频免费| 欧美视频在线网站| 成人毛片视频免费网站观看| 国产日产高清欧美一区| 亚洲色偷偷偷综合网| 中文人妻熟妇乱又伦精品| 高清午夜看片a福利在线观看琪琪| 欧美激情视频网| 女神校花乳环调教| 国产一区二区三区久久精品| 亚欧色视频在线观看免费| 99re免费在线视频| 精品国产麻豆免费网站| 日本口工h全彩漫画大全| 国产热の有码热の无码视频| 亚洲欧美精品午睡沙发| h无遮挡男女激烈动态图| 美国十次啦导航网|